Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbied2 Unicode version

Theorem csbied2 3015
 Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
csbied2.1
csbied2.2
csbied2.3
Assertion
Ref Expression
csbied2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem csbied2
StepHypRef Expression
1 csbied2.1 . 2
2 id 19 . . . 4
3 csbied2.2 . . . 4
42, 3sylan9eqr 2170 . . 3
5 csbied2.3 . . 3
64, 5syldan 278 . 2
71, 6csbied 3014 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1314   wcel 1463  csb 2973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-sbc 2881  df-csb 2974 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator