ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbied2 Unicode version

Theorem csbied2 3128
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
csbied2.1  |-  ( ph  ->  A  e.  V )
csbied2.2  |-  ( ph  ->  A  =  B )
csbied2.3  |-  ( (
ph  /\  x  =  B )  ->  C  =  D )
Assertion
Ref Expression
csbied2  |-  ( ph  ->  [_ A  /  x ]_ C  =  D
)
Distinct variable groups:    x, A    ph, x    x, D
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem csbied2
StepHypRef Expression
1 csbied2.1 . 2  |-  ( ph  ->  A  e.  V )
2 id 19 . . . 4  |-  ( x  =  A  ->  x  =  A )
3 csbied2.2 . . . 4  |-  ( ph  ->  A  =  B )
42, 3sylan9eqr 2248 . . 3  |-  ( (
ph  /\  x  =  A )  ->  x  =  B )
5 csbied2.3 . . 3  |-  ( (
ph  /\  x  =  B )  ->  C  =  D )
64, 5syldan 282 . 2  |-  ( (
ph  /\  x  =  A )  ->  C  =  D )
71, 6csbied 3127 1  |-  ( ph  ->  [_ A  /  x ]_ C  =  D
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   [_csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-csb 3081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator