| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbied2 | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| csbied2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| csbied2.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| csbied2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| csbied2 | ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbied2.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | id 19 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 3 | csbied2.2 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 2, 3 | sylan9eqr 2261 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐵) |
| 5 | csbied2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) | |
| 6 | 4, 5 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) |
| 7 | 1, 6 | csbied 3144 | 1 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ⦋csb 3097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3003 df-csb 3098 |
| This theorem is referenced by: prdsval 13175 |
| Copyright terms: Public domain | W3C validator |