| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eqr | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) |
| Ref | Expression |
|---|---|
| sylan9eqr.1 |
|
| sylan9eqr.2 |
|
| Ref | Expression |
|---|---|
| sylan9eqr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eqr.1 |
. . 3
| |
| 2 | sylan9eqr.2 |
. . 3
| |
| 3 | 1, 2 | sylan9eq 2260 |
. 2
|
| 4 | 3 | ancoms 268 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: sbcied2 3043 csbied2 3149 fun2ssres 5333 fcoi1 5478 fcoi2 5479 funssfv 5625 caovimo 6163 mpomptsx 6306 dmmpossx 6308 fmpox 6309 2ndconst 6331 mpoxopoveq 6349 tfrlemisucaccv 6434 tfr1onlemsucaccv 6450 tfrcllemsucaccv 6463 rdgivallem 6490 nnmass 6596 nnm00 6639 ssenen 6973 fi0 7103 nnnninf2 7255 nnnninfeq2 7257 exmidfodomrlemim 7340 ltexnqq 7556 ltrnqg 7568 nqnq0a 7602 nqnq0m 7603 nq0m0r 7604 nq0a0 7605 addnqprllem 7675 addnqprulem 7676 map2psrprg 7953 rereceu 8037 addid0 8480 nnnn0addcl 9360 zindd 9526 qaddcl 9791 qmulcl 9793 qreccl 9798 xaddpnf1 10003 xaddmnf1 10005 xaddnemnf 10014 xaddnepnf 10015 xaddcom 10018 xnegdi 10025 xaddass 10026 xpncan 10028 xleadd1a 10030 xltadd1 10033 xlt2add 10037 modfzo0difsn 10577 frec2uzrdg 10591 seqf1oglem2 10702 expp1 10728 expnegap0 10729 expcllem 10732 mulexp 10760 expmul 10766 sqoddm1div8 10875 bcpasc 10948 hashfzo 11004 lsw0 11078 ccatval1 11091 ccatval2 11092 swrdval 11139 ccatopth 11207 reuccatpfxs1 11238 shftfn 11250 reim0b 11288 cjexp 11319 sumsnf 11835 binomlem 11909 prodsnf 12018 ef0lem 12086 dvdsnegb 12234 m1expe 12325 m1expo 12326 m1exp1 12327 flodddiv4 12362 gcdabs 12424 bezoutr1 12469 dvdslcm 12506 lcmeq0 12508 lcmcl 12509 lcmabs 12513 lcmgcdlem 12514 lcmdvds 12516 mulgcddvds 12531 qredeu 12534 divgcdcoprmex 12539 pcge0 12751 pcgcd1 12766 pcadd 12778 pcmpt2 12782 mulgfvalg 13572 mulgnn0subcl 13586 mulgnn0z 13600 f1ghm0to0 13723 srgmulgass 13866 srgpcomp 13867 ringinvnzdiv 13927 lmodvsmmulgdi 14200 znval 14513 mplvalcoe 14567 isxmet2d 14935 blfvalps 14972 blssioo 15140 efper 15394 relogbcxpbap 15552 logbgcd1irr 15554 lgsdir 15627 lgsne0 15630 lgsdirnn0 15639 lgsdinn0 15640 lgsquadlem2 15670 2lgslem3a 15685 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 2lgslem3a1 15689 2lgslem3b1 15690 2lgslem3c1 15691 2lgslem3d1 15692 trirec0xor 16186 |
| Copyright terms: Public domain | W3C validator |