ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm3 Unicode version

Theorem dfdm3 4791
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm3  |-  dom  A  =  { x  |  E. y <. x ,  y
>.  e.  A }
Distinct variable group:    x, y, A

Proof of Theorem dfdm3
StepHypRef Expression
1 df-dm 4614 . 2  |-  dom  A  =  { x  |  E. y  x A y }
2 df-br 3983 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32exbii 1593 . . 3  |-  ( E. y  x A y  <->  E. y <. x ,  y
>.  e.  A )
43abbii 2282 . 2  |-  { x  |  E. y  x A y }  =  {
x  |  E. y <. x ,  y >.  e.  A }
51, 4eqtri 2186 1  |-  dom  A  =  { x  |  E. y <. x ,  y
>.  e.  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   <.cop 3579   class class class wbr 3982   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-br 3983  df-dm 4614
This theorem is referenced by:  csbdmg  4798
  Copyright terms: Public domain W3C validator