ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm3 Unicode version

Theorem dfdm3 4816
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm3  |-  dom  A  =  { x  |  E. y <. x ,  y
>.  e.  A }
Distinct variable group:    x, y, A

Proof of Theorem dfdm3
StepHypRef Expression
1 df-dm 4638 . 2  |-  dom  A  =  { x  |  E. y  x A y }
2 df-br 4006 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32exbii 1605 . . 3  |-  ( E. y  x A y  <->  E. y <. x ,  y
>.  e.  A )
43abbii 2293 . 2  |-  { x  |  E. y  x A y }  =  {
x  |  E. y <. x ,  y >.  e.  A }
51, 4eqtri 2198 1  |-  dom  A  =  { x  |  E. y <. x ,  y
>.  e.  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   <.cop 3597   class class class wbr 4005   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-br 4006  df-dm 4638
This theorem is referenced by:  csbdmg  4823
  Copyright terms: Public domain W3C validator