ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm3 Unicode version

Theorem dfdm3 4909
Description: Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
Assertion
Ref Expression
dfdm3  |-  dom  A  =  { x  |  E. y <. x ,  y
>.  e.  A }
Distinct variable group:    x, y, A

Proof of Theorem dfdm3
StepHypRef Expression
1 df-dm 4729 . 2  |-  dom  A  =  { x  |  E. y  x A y }
2 df-br 4084 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
32exbii 1651 . . 3  |-  ( E. y  x A y  <->  E. y <. x ,  y
>.  e.  A )
43abbii 2345 . 2  |-  { x  |  E. y  x A y }  =  {
x  |  E. y <. x ,  y >.  e.  A }
51, 4eqtri 2250 1  |-  dom  A  =  { x  |  E. y <. x ,  y
>.  e.  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   <.cop 3669   class class class wbr 4083   dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-br 4084  df-dm 4729
This theorem is referenced by:  csbdmg  4917
  Copyright terms: Public domain W3C validator