ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbdmg Unicode version

Theorem csbdmg 4798
Description: Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
Assertion
Ref Expression
csbdmg  |-  ( A  e.  V  ->  [_ A  /  x ]_ dom  B  =  dom  [_ A  /  x ]_ B )

Proof of Theorem csbdmg
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3106 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. y ,  w >.  e.  B } )
2 sbcex2 3004 . . . . 5  |-  ( [. A  /  x ]. E. w <. y ,  w >.  e.  B  <->  E. w [. A  /  x ]. <. y ,  w >.  e.  B )
3 sbcel2g 3066 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. <. y ,  w >.  e.  B  <->  <. y ,  w >.  e.  [_ A  /  x ]_ B ) )
43exbidv 1813 . . . . 5  |-  ( A  e.  V  ->  ( E. w [. A  /  x ]. <. y ,  w >.  e.  B  <->  E. w <. y ,  w >.  e. 
[_ A  /  x ]_ B ) )
52, 4syl5bb 191 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. y ,  w >.  e.  B  <->  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B ) )
65abbidv 2284 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. E. w <. y ,  w >.  e.  B }  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
)
71, 6eqtrd 2198 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
)
8 dfdm3 4791 . . 3  |-  dom  B  =  { y  |  E. w <. y ,  w >.  e.  B }
98csbeq2i 3072 . 2  |-  [_ A  /  x ]_ dom  B  =  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }
10 dfdm3 4791 . 2  |-  dom  [_ A  /  x ]_ B  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
117, 9, 103eqtr4g 2224 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ dom  B  =  dom  [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   [.wsbc 2951   [_csb 3045   <.cop 3579   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046  df-br 3983  df-dm 4614
This theorem is referenced by:  sbcfng  5335
  Copyright terms: Public domain W3C validator