ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbdmg Unicode version

Theorem csbdmg 4860
Description: Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
Assertion
Ref Expression
csbdmg  |-  ( A  e.  V  ->  [_ A  /  x ]_ dom  B  =  dom  [_ A  /  x ]_ B )

Proof of Theorem csbdmg
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3146 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. y ,  w >.  e.  B } )
2 sbcex2 3043 . . . . 5  |-  ( [. A  /  x ]. E. w <. y ,  w >.  e.  B  <->  E. w [. A  /  x ]. <. y ,  w >.  e.  B )
3 sbcel2g 3105 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. <. y ,  w >.  e.  B  <->  <. y ,  w >.  e.  [_ A  /  x ]_ B ) )
43exbidv 1839 . . . . 5  |-  ( A  e.  V  ->  ( E. w [. A  /  x ]. <. y ,  w >.  e.  B  <->  E. w <. y ,  w >.  e. 
[_ A  /  x ]_ B ) )
52, 4bitrid 192 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. y ,  w >.  e.  B  <->  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B ) )
65abbidv 2314 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. E. w <. y ,  w >.  e.  B }  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
)
71, 6eqtrd 2229 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
)
8 dfdm3 4853 . . 3  |-  dom  B  =  { y  |  E. w <. y ,  w >.  e.  B }
98csbeq2i 3111 . 2  |-  [_ A  /  x ]_ dom  B  =  [_ A  /  x ]_ { y  |  E. w <. y ,  w >.  e.  B }
10 dfdm3 4853 . 2  |-  dom  [_ A  /  x ]_ B  =  { y  |  E. w <. y ,  w >.  e.  [_ A  /  x ]_ B }
117, 9, 103eqtr4g 2254 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ dom  B  =  dom  [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   [.wsbc 2989   [_csb 3084   <.cop 3625   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085  df-br 4034  df-dm 4673
This theorem is referenced by:  sbcfng  5405
  Copyright terms: Public domain W3C validator