ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn2 Unicode version

Theorem dfrn2 4910
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y, A

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 4730 . 2  |-  ran  A  =  dom  `' A
2 df-dm 4729 . 2  |-  dom  `' A  =  { y  |  E. x  y `' A x }
3 vex 2802 . . . . 5  |-  y  e. 
_V
4 vex 2802 . . . . 5  |-  x  e. 
_V
53, 4brcnv 4905 . . . 4  |-  ( y `' A x  <->  x A
y )
65exbii 1651 . . 3  |-  ( E. x  y `' A x 
<->  E. x  x A y )
76abbii 2345 . 2  |-  { y  |  E. x  y `' A x }  =  { y  |  E. x  x A y }
81, 2, 73eqtri 2254 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1395   E.wex 1538   {cab 2215   class class class wbr 4083   `'ccnv 4718   dom cdm 4719   ran crn 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  dfrn3  4911  dfdm4  4915  dm0rn0  4940  dmmrnm  4943  dfrnf  4965  dfima2  5070  funcnv3  5383
  Copyright terms: Public domain W3C validator