ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn2 Unicode version

Theorem dfrn2 4792
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y, A

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 4615 . 2  |-  ran  A  =  dom  `' A
2 df-dm 4614 . 2  |-  dom  `' A  =  { y  |  E. x  y `' A x }
3 vex 2729 . . . . 5  |-  y  e. 
_V
4 vex 2729 . . . . 5  |-  x  e. 
_V
53, 4brcnv 4787 . . . 4  |-  ( y `' A x  <->  x A
y )
65exbii 1593 . . 3  |-  ( E. x  y `' A x 
<->  E. x  x A y )
76abbii 2282 . 2  |-  { y  |  E. x  y `' A x }  =  { y  |  E. x  x A y }
81, 2, 73eqtri 2190 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1343   E.wex 1480   {cab 2151   class class class wbr 3982   `'ccnv 4603   dom cdm 4604   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  dfrn3  4793  dfdm4  4796  dm0rn0  4821  dmmrnm  4823  dfrnf  4845  dfima2  4948  funcnv3  5250
  Copyright terms: Public domain W3C validator