ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn2 Unicode version

Theorem dfrn2 4855
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y, A

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 4675 . 2  |-  ran  A  =  dom  `' A
2 df-dm 4674 . 2  |-  dom  `' A  =  { y  |  E. x  y `' A x }
3 vex 2766 . . . . 5  |-  y  e. 
_V
4 vex 2766 . . . . 5  |-  x  e. 
_V
53, 4brcnv 4850 . . . 4  |-  ( y `' A x  <->  x A
y )
65exbii 1619 . . 3  |-  ( E. x  y `' A x 
<->  E. x  x A y )
76abbii 2312 . 2  |-  { y  |  E. x  y `' A x }  =  { y  |  E. x  x A y }
81, 2, 73eqtri 2221 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1364   E.wex 1506   {cab 2182   class class class wbr 4034   `'ccnv 4663   dom cdm 4664   ran crn 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-cnv 4672  df-dm 4674  df-rn 4675
This theorem is referenced by:  dfrn3  4856  dfdm4  4859  dm0rn0  4884  dmmrnm  4886  dfrnf  4908  dfima2  5012  funcnv3  5321
  Copyright terms: Public domain W3C validator