ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn2 Unicode version

Theorem dfrn2 4817
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y, A

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 4639 . 2  |-  ran  A  =  dom  `' A
2 df-dm 4638 . 2  |-  dom  `' A  =  { y  |  E. x  y `' A x }
3 vex 2742 . . . . 5  |-  y  e. 
_V
4 vex 2742 . . . . 5  |-  x  e. 
_V
53, 4brcnv 4812 . . . 4  |-  ( y `' A x  <->  x A
y )
65exbii 1605 . . 3  |-  ( E. x  y `' A x 
<->  E. x  x A y )
76abbii 2293 . 2  |-  { y  |  E. x  y `' A x }  =  { y  |  E. x  x A y }
81, 2, 73eqtri 2202 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1353   E.wex 1492   {cab 2163   class class class wbr 4005   `'ccnv 4627   dom cdm 4628   ran crn 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by:  dfrn3  4818  dfdm4  4821  dm0rn0  4846  dmmrnm  4848  dfrnf  4870  dfima2  4974  funcnv3  5280
  Copyright terms: Public domain W3C validator