ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfmq0qs Unicode version

Theorem dfmq0qs 7577
Description: Multiplication on nonnegative fractions. This definition is similar to df-mq0 7576 but expands Q0. (Contributed by Jim Kingdon, 22-Nov-2019.)
Assertion
Ref Expression
dfmq0qs  |- ·Q0 
=  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
Distinct variable group:    x, y, z, w, v, u, f

Proof of Theorem dfmq0qs
StepHypRef Expression
1 df-mq0 7576 . 2  |- ·Q0 
=  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
2 df-nq0 7573 . . . . . 6  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
32eleq2i 2274 . . . . 5  |-  ( x  e. Q0  <->  x  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
42eleq2i 2274 . . . . 5  |-  ( y  e. Q0  <->  y  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
53, 4anbi12i 460 . . . 4  |-  ( ( x  e. Q0  /\  y  e. Q0 )  <->  ( x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
65anbi1i 458 . . 3  |-  ( ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) )  <->  ( ( x  e.  ( ( om 
X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) )
76oprabbii 6023 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e. Q0  /\  y  e. Q0 )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
81, 7eqtri 2228 1  |- ·Q0 
=  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  y  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] ~Q0  /\  y  =  [ <. u ,  f >. ] ~Q0  )  /\  z  =  [ <. ( w  .o  u
) ,  ( v  .o  f ) >. ] ~Q0  ) ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   <.cop 3646   omcom 4656    X. cxp 4691  (class class class)co 5967   {coprab 5968    .o comu 6523   [cec 6641   /.cqs 6642   N.cnpi 7420   ~Q0 ceq0 7434  Q0cnq0 7435   ·Q0 cmq0 7438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-oprab 5971  df-nq0 7573  df-mq0 7576
This theorem is referenced by:  mulnnnq0  7598
  Copyright terms: Public domain W3C validator