Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfmq0qs | Unicode version |
Description: Multiplication on nonnegative fractions. This definition is similar to df-mq0 7369 but expands Q0. (Contributed by Jim Kingdon, 22-Nov-2019.) |
Ref | Expression |
---|---|
dfmq0qs | ·Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mq0 7369 | . 2 ·Q0 Q0 Q0 ~Q0 ~Q0 ~Q0 | |
2 | df-nq0 7366 | . . . . . 6 Q0 ~Q0 | |
3 | 2 | eleq2i 2233 | . . . . 5 Q0 ~Q0 |
4 | 2 | eleq2i 2233 | . . . . 5 Q0 ~Q0 |
5 | 3, 4 | anbi12i 456 | . . . 4 Q0 Q0 ~Q0 ~Q0 |
6 | 5 | anbi1i 454 | . . 3 Q0 Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 |
7 | 6 | oprabbii 5897 | . 2 Q0 Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 |
8 | 1, 7 | eqtri 2186 | 1 ·Q0 ~Q0 ~Q0 ~Q0 ~Q0 ~Q0 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cop 3579 com 4567 cxp 4602 (class class class)co 5842 coprab 5843 comu 6382 cec 6499 cqs 6500 cnpi 7213 ~Q0 ceq0 7227 Q0cnq0 7228 ·Q0 cmq0 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-oprab 5846 df-nq0 7366 df-mq0 7369 |
This theorem is referenced by: mulnnnq0 7391 |
Copyright terms: Public domain | W3C validator |