| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfmq0qs | Unicode version | ||
| Description: Multiplication on nonnegative fractions. This definition is similar to df-mq0 7576 but expands Q0. (Contributed by Jim Kingdon, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| dfmq0qs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mq0 7576 |
. 2
| |
| 2 | df-nq0 7573 |
. . . . . 6
| |
| 3 | 2 | eleq2i 2274 |
. . . . 5
|
| 4 | 2 | eleq2i 2274 |
. . . . 5
|
| 5 | 3, 4 | anbi12i 460 |
. . . 4
|
| 6 | 5 | anbi1i 458 |
. . 3
|
| 7 | 6 | oprabbii 6023 |
. 2
|
| 8 | 1, 7 | eqtri 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-oprab 5971 df-nq0 7573 df-mq0 7576 |
| This theorem is referenced by: mulnnnq0 7598 |
| Copyright terms: Public domain | W3C validator |