Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfmq0qs | GIF version |
Description: Multiplication on nonnegative fractions. This definition is similar to df-mq0 7390 but expands Q0. (Contributed by Jim Kingdon, 22-Nov-2019.) |
Ref | Expression |
---|---|
dfmq0qs | ⊢ ·Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mq0 7390 | . 2 ⊢ ·Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} | |
2 | df-nq0 7387 | . . . . . 6 ⊢ Q0 = ((ω × N) / ~Q0 ) | |
3 | 2 | eleq2i 2237 | . . . . 5 ⊢ (𝑥 ∈ Q0 ↔ 𝑥 ∈ ((ω × N) / ~Q0 )) |
4 | 2 | eleq2i 2237 | . . . . 5 ⊢ (𝑦 ∈ Q0 ↔ 𝑦 ∈ ((ω × N) / ~Q0 )) |
5 | 3, 4 | anbi12i 457 | . . . 4 ⊢ ((𝑥 ∈ Q0 ∧ 𝑦 ∈ Q0) ↔ (𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 ))) |
6 | 5 | anbi1i 455 | . . 3 ⊢ (((𝑥 ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 )) ↔ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))) |
7 | 6 | oprabbii 5908 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ Q0 ∧ 𝑦 ∈ Q0) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} |
8 | 1, 7 | eqtri 2191 | 1 ⊢ ·Q0 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~Q0 ∧ 𝑦 = [〈𝑢, 𝑓〉] ~Q0 ) ∧ 𝑧 = [〈(𝑤 ·o 𝑢), (𝑣 ·o 𝑓)〉] ~Q0 ))} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 〈cop 3586 ωcom 4574 × cxp 4609 (class class class)co 5853 {coprab 5854 ·o comu 6393 [cec 6511 / cqs 6512 Ncnpi 7234 ~Q0 ceq0 7248 Q0cnq0 7249 ·Q0 cmq0 7252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-oprab 5857 df-nq0 7387 df-mq0 7390 |
This theorem is referenced by: mulnnnq0 7412 |
Copyright terms: Public domain | W3C validator |