Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprabbii | Unicode version |
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
oprabbii.1 |
Ref | Expression |
---|---|
oprabbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2157 | . 2 | |
2 | oprabbii.1 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | 3 | oprabbidv 5875 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1335 coprab 5825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-oprab 5828 |
This theorem is referenced by: oprab4 5892 mpov 5911 dfxp3 6142 tposmpo 6228 oviec 6586 dfplpq2 7274 dfmpq2 7275 dfmq0qs 7349 dfplq0qs 7350 addsrpr 7665 mulsrpr 7666 addcnsr 7754 mulcnsr 7755 addvalex 7764 |
Copyright terms: Public domain | W3C validator |