Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbii Unicode version

Theorem oprabbii 5792
 Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1
Assertion
Ref Expression
oprabbii
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem oprabbii
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2115 . 2
2 oprabbii.1 . . . 4
32a1i 9 . . 3
43oprabbidv 5791 . 2
51, 4ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wb 104   wceq 1314  coprab 5741 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-oprab 5744 This theorem is referenced by:  oprab4  5808  mpov  5827  dfxp3  6058  tposmpo  6144  oviec  6501  dfplpq2  7126  dfmpq2  7127  dfmq0qs  7201  dfplq0qs  7202  addsrpr  7517  mulsrpr  7518  addcnsr  7606  mulcnsr  7607  addvalex  7616
 Copyright terms: Public domain W3C validator