Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprabbii | Unicode version |
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
oprabbii.1 |
Ref | Expression |
---|---|
oprabbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . 2 | |
2 | oprabbii.1 | . . . 4 | |
3 | 2 | a1i 9 | . . 3 |
4 | 3 | oprabbidv 5896 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-oprab 5846 |
This theorem is referenced by: oprab4 5913 mpov 5932 dfxp3 6162 tposmpo 6249 oviec 6607 dfplpq2 7295 dfmpq2 7296 dfmq0qs 7370 dfplq0qs 7371 addsrpr 7686 mulsrpr 7687 addcnsr 7775 mulcnsr 7776 addvalex 7785 |
Copyright terms: Public domain | W3C validator |