| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oprabbii | Unicode version | ||
| Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) | 
| Ref | Expression | 
|---|---|
| oprabbii.1 | 
 | 
| Ref | Expression | 
|---|---|
| oprabbii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. 2
 | |
| 2 | oprabbii.1 | 
. . . 4
 | |
| 3 | 2 | a1i 9 | 
. . 3
 | 
| 4 | 3 | oprabbidv 5976 | 
. 2
 | 
| 5 | 1, 4 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-oprab 5926 | 
| This theorem is referenced by: oprab4 5993 mpov 6012 dfxp3 6252 tposmpo 6339 oviec 6700 dfplpq2 7421 dfmpq2 7422 dfmq0qs 7496 dfplq0qs 7497 addsrpr 7812 mulsrpr 7813 addcnsr 7901 mulcnsr 7902 addvalex 7911 | 
| Copyright terms: Public domain | W3C validator |