ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbii Unicode version

Theorem oprabbii 6000
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
oprabbii  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem oprabbii
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqid 2205 . 2  |-  w  =  w
2 oprabbii.1 . . . 4  |-  ( ph  <->  ps )
32a1i 9 . . 3  |-  ( w  =  w  ->  ( ph 
<->  ps ) )
43oprabbidv 5999 . 2  |-  ( w  =  w  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps } )
51, 4ax-mp 5 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   {coprab 5945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-oprab 5948
This theorem is referenced by:  oprab4  6016  mpov  6035  dfxp3  6280  tposmpo  6367  oviec  6728  dfplpq2  7467  dfmpq2  7468  dfmq0qs  7542  dfplq0qs  7543  addsrpr  7858  mulsrpr  7859  addcnsr  7947  mulcnsr  7948  addvalex  7957
  Copyright terms: Public domain W3C validator