| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabbii | Unicode version | ||
| Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| oprabbii.1 |
|
| Ref | Expression |
|---|---|
| oprabbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. 2
| |
| 2 | oprabbii.1 |
. . . 4
| |
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | 3 | oprabbidv 6022 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-oprab 5971 |
| This theorem is referenced by: oprab4 6039 mpov 6058 dfxp3 6303 tposmpo 6390 oviec 6751 dfplpq2 7502 dfmpq2 7503 dfmq0qs 7577 dfplq0qs 7578 addsrpr 7893 mulsrpr 7894 addcnsr 7982 mulcnsr 7983 addvalex 7992 |
| Copyright terms: Public domain | W3C validator |