ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbii Unicode version

Theorem oprabbii 5704
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
oprabbii  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem oprabbii
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqid 2088 . 2  |-  w  =  w
2 oprabbii.1 . . . 4  |-  ( ph  <->  ps )
32a1i 9 . . 3  |-  ( w  =  w  ->  ( ph 
<->  ps ) )
43oprabbidv 5703 . 2  |-  ( w  =  w  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps } )
51, 4ax-mp 7 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1289   {coprab 5653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-oprab 5656
This theorem is referenced by:  oprab4  5719  mpt2v  5738  dfxp3  5964  tposmpt2  6046  oviec  6398  dfplpq2  6913  dfmpq2  6914  dfmq0qs  6988  dfplq0qs  6989  addsrpr  7291  mulsrpr  7292  addcnsr  7371  mulcnsr  7372  addvalex  7381
  Copyright terms: Public domain W3C validator