ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabbii Unicode version

Theorem oprabbii 5876
Description: Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
oprabbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
oprabbii  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem oprabbii
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 eqid 2157 . 2  |-  w  =  w
2 oprabbii.1 . . . 4  |-  ( ph  <->  ps )
32a1i 9 . . 3  |-  ( w  =  w  ->  ( ph 
<->  ps ) )
43oprabbidv 5875 . 2  |-  ( w  =  w  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps } )
51, 4ax-mp 5 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. <. x ,  y >. ,  z
>.  |  ps }
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1335   {coprab 5825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-oprab 5828
This theorem is referenced by:  oprab4  5892  mpov  5911  dfxp3  6142  tposmpo  6228  oviec  6586  dfplpq2  7274  dfmpq2  7275  dfmq0qs  7349  dfplq0qs  7350  addsrpr  7665  mulsrpr  7666  addcnsr  7754  mulcnsr  7755  addvalex  7764
  Copyright terms: Public domain W3C validator