ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prime Unicode version

Theorem prime 9341
Description: Two ways to express " A is a prime number (or 1)". (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Distinct variable group:    x, A

Proof of Theorem prime
StepHypRef Expression
1 nnz 9261 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  ZZ )
2 1z 9268 . . . . . . . 8  |-  1  e.  ZZ
3 zdceq 9317 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  1  e.  ZZ )  -> DECID  x  =  1 )
42, 3mpan2 425 . . . . . . 7  |-  ( x  e.  ZZ  -> DECID  x  =  1
)
5 dfordc 892 . . . . . . . 8  |-  (DECID  x  =  1  ->  ( (
x  =  1  \/  x  =  A )  <-> 
( -.  x  =  1  ->  x  =  A ) ) )
6 df-ne 2348 . . . . . . . . 9  |-  ( x  =/=  1  <->  -.  x  =  1 )
76imbi1i 238 . . . . . . . 8  |-  ( ( x  =/=  1  ->  x  =  A )  <->  ( -.  x  =  1  ->  x  =  A ) )
85, 7bitr4di 198 . . . . . . 7  |-  (DECID  x  =  1  ->  ( (
x  =  1  \/  x  =  A )  <-> 
( x  =/=  1  ->  x  =  A ) ) )
91, 4, 83syl 17 . . . . . 6  |-  ( x  e.  NN  ->  (
( x  =  1  \/  x  =  A )  <->  ( x  =/=  1  ->  x  =  A ) ) )
109imbi2d 230 . . . . 5  |-  ( x  e.  NN  ->  (
( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) ) )
11 impexp 263 . . . . . 6  |-  ( ( ( x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A )  <->  ( x  =/=  1  ->  ( ( A  /  x )  e.  NN  ->  x  =  A ) ) )
12 bi2.04 248 . . . . . 6  |-  ( ( x  =/=  1  -> 
( ( A  /  x )  e.  NN  ->  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
1311, 12bitri 184 . . . . 5  |-  ( ( ( x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
1410, 13bitr4di 198 . . . 4  |-  ( x  e.  NN  ->  (
( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A ) ) )
1514adantl 277 . . 3  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A ) ) )
16 nngt1ne1 8943 . . . . . . 7  |-  ( x  e.  NN  ->  (
1  <  x  <->  x  =/=  1 ) )
1716adantl 277 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( 1  <  x  <->  x  =/=  1 ) )
1817anbi1d 465 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( x  =/=  1  /\  ( A  /  x
)  e.  NN ) ) )
19 nnz 9261 . . . . . . . . 9  |-  ( ( A  /  x )  e.  NN  ->  ( A  /  x )  e.  ZZ )
20 nnre 8915 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  RR )
21 gtndiv 9337 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  A  e.  NN  /\  A  <  x )  ->  -.  ( A  /  x
)  e.  ZZ )
22213expia 1205 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
2320, 22sylan 283 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
2423con2d 624 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  -.  A  <  x
) )
25 nnre 8915 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  RR )
26 lenlt 8023 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <_  A  <->  -.  A  <  x ) )
2720, 25, 26syl2an 289 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( x  <_  A  <->  -.  A  <  x ) )
2824, 27sylibrd 169 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
2928ancoms 268 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
3019, 29syl5 32 . . . . . . . 8  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  ->  x  <_  A )
)
3130pm4.71rd 394 . . . . . . 7  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  <->  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3231anbi2d 464 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) ) )
33 3anass 982 . . . . . 6  |-  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  (
x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3432, 33bitr4di 198 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3518, 34bitr3d 190 . . . 4  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN ) ) )
3635imbi1d 231 . . 3  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  ->  x  =  A )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
3715, 36bitrd 188 . 2  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
3837ralbidva 2473 1  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   class class class wbr 4000  (class class class)co 5869   RRcr 7801   1c1 7803    < clt 7982    <_ cle 7983    / cdiv 8618   NNcn 8908   ZZcz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243
This theorem is referenced by:  infpnlem1  12340
  Copyright terms: Public domain W3C validator