Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prime | Unicode version |
Description: Two ways to express " is a prime number (or 1)." (Contributed by NM, 4-May-2005.) |
Ref | Expression |
---|---|
prime |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 9169 | . . . . . . 7 | |
2 | 1z 9176 | . . . . . . . 8 | |
3 | zdceq 9222 | . . . . . . . 8 DECID | |
4 | 2, 3 | mpan2 422 | . . . . . . 7 DECID |
5 | dfordc 878 | . . . . . . . 8 DECID | |
6 | df-ne 2328 | . . . . . . . . 9 | |
7 | 6 | imbi1i 237 | . . . . . . . 8 |
8 | 5, 7 | bitr4di 197 | . . . . . . 7 DECID |
9 | 1, 4, 8 | 3syl 17 | . . . . . 6 |
10 | 9 | imbi2d 229 | . . . . 5 |
11 | impexp 261 | . . . . . 6 | |
12 | bi2.04 247 | . . . . . 6 | |
13 | 11, 12 | bitri 183 | . . . . 5 |
14 | 10, 13 | bitr4di 197 | . . . 4 |
15 | 14 | adantl 275 | . . 3 |
16 | nngt1ne1 8851 | . . . . . . 7 | |
17 | 16 | adantl 275 | . . . . . 6 |
18 | 17 | anbi1d 461 | . . . . 5 |
19 | nnz 9169 | . . . . . . . . 9 | |
20 | nnre 8823 | . . . . . . . . . . . . 13 | |
21 | gtndiv 9242 | . . . . . . . . . . . . . 14 | |
22 | 21 | 3expia 1187 | . . . . . . . . . . . . 13 |
23 | 20, 22 | sylan 281 | . . . . . . . . . . . 12 |
24 | 23 | con2d 614 | . . . . . . . . . . 11 |
25 | nnre 8823 | . . . . . . . . . . . 12 | |
26 | lenlt 7936 | . . . . . . . . . . . 12 | |
27 | 20, 25, 26 | syl2an 287 | . . . . . . . . . . 11 |
28 | 24, 27 | sylibrd 168 | . . . . . . . . . 10 |
29 | 28 | ancoms 266 | . . . . . . . . 9 |
30 | 19, 29 | syl5 32 | . . . . . . . 8 |
31 | 30 | pm4.71rd 392 | . . . . . . 7 |
32 | 31 | anbi2d 460 | . . . . . 6 |
33 | 3anass 967 | . . . . . 6 | |
34 | 32, 33 | bitr4di 197 | . . . . 5 |
35 | 18, 34 | bitr3d 189 | . . . 4 |
36 | 35 | imbi1d 230 | . . 3 |
37 | 15, 36 | bitrd 187 | . 2 |
38 | 37 | ralbidva 2453 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 w3a 963 wceq 1335 wcel 2128 wne 2327 wral 2435 class class class wbr 3965 (class class class)co 5818 cr 7714 c1 7716 clt 7895 cle 7896 cdiv 8528 cn 8816 cz 9150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-n0 9074 df-z 9151 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |