ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prime Unicode version

Theorem prime 9472
Description: Two ways to express " A is a prime number (or 1)". (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Distinct variable group:    x, A

Proof of Theorem prime
StepHypRef Expression
1 nnz 9391 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  ZZ )
2 1z 9398 . . . . . . . 8  |-  1  e.  ZZ
3 zdceq 9448 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  1  e.  ZZ )  -> DECID  x  =  1 )
42, 3mpan2 425 . . . . . . 7  |-  ( x  e.  ZZ  -> DECID  x  =  1
)
5 dfordc 894 . . . . . . . 8  |-  (DECID  x  =  1  ->  ( (
x  =  1  \/  x  =  A )  <-> 
( -.  x  =  1  ->  x  =  A ) ) )
6 df-ne 2377 . . . . . . . . 9  |-  ( x  =/=  1  <->  -.  x  =  1 )
76imbi1i 238 . . . . . . . 8  |-  ( ( x  =/=  1  ->  x  =  A )  <->  ( -.  x  =  1  ->  x  =  A ) )
85, 7bitr4di 198 . . . . . . 7  |-  (DECID  x  =  1  ->  ( (
x  =  1  \/  x  =  A )  <-> 
( x  =/=  1  ->  x  =  A ) ) )
91, 4, 83syl 17 . . . . . 6  |-  ( x  e.  NN  ->  (
( x  =  1  \/  x  =  A )  <->  ( x  =/=  1  ->  x  =  A ) ) )
109imbi2d 230 . . . . 5  |-  ( x  e.  NN  ->  (
( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) ) )
11 impexp 263 . . . . . 6  |-  ( ( ( x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A )  <->  ( x  =/=  1  ->  ( ( A  /  x )  e.  NN  ->  x  =  A ) ) )
12 bi2.04 248 . . . . . 6  |-  ( ( x  =/=  1  -> 
( ( A  /  x )  e.  NN  ->  x  =  A ) )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
1311, 12bitri 184 . . . . 5  |-  ( ( ( x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A )  <->  ( ( A  /  x )  e.  NN  ->  ( x  =/=  1  ->  x  =  A ) ) )
1410, 13bitr4di 198 . . . 4  |-  ( x  e.  NN  ->  (
( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A ) ) )
1514adantl 277 . . 3  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
x  =/=  1  /\  ( A  /  x
)  e.  NN )  ->  x  =  A ) ) )
16 nngt1ne1 9071 . . . . . . 7  |-  ( x  e.  NN  ->  (
1  <  x  <->  x  =/=  1 ) )
1716adantl 277 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( 1  <  x  <->  x  =/=  1 ) )
1817anbi1d 465 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( x  =/=  1  /\  ( A  /  x
)  e.  NN ) ) )
19 nnz 9391 . . . . . . . . 9  |-  ( ( A  /  x )  e.  NN  ->  ( A  /  x )  e.  ZZ )
20 nnre 9043 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  RR )
21 gtndiv 9468 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  A  e.  NN  /\  A  <  x )  ->  -.  ( A  /  x
)  e.  ZZ )
22213expia 1208 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
2320, 22sylan 283 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( A  <  x  ->  -.  ( A  /  x )  e.  ZZ ) )
2423con2d 625 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  -.  A  <  x
) )
25 nnre 9043 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  RR )
26 lenlt 8148 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x  <_  A  <->  -.  A  <  x ) )
2720, 25, 26syl2an 289 . . . . . . . . . . 11  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( x  <_  A  <->  -.  A  <  x ) )
2824, 27sylibrd 169 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  A  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
2928ancoms 268 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  ZZ  ->  x  <_  A )
)
3019, 29syl5 32 . . . . . . . 8  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  ->  x  <_  A )
)
3130pm4.71rd 394 . . . . . . 7  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( A  /  x )  e.  NN  <->  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3231anbi2d 464 . . . . . 6  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  ( x  <_  A  /\  ( A  /  x
)  e.  NN ) ) ) )
33 3anass 985 . . . . . 6  |-  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  (
x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3432, 33bitr4di 198 . . . . 5  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( 1  < 
x  /\  ( A  /  x )  e.  NN ) 
<->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x
)  e.  NN ) ) )
3518, 34bitr3d 190 . . . 4  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  <->  ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN ) ) )
3635imbi1d 231 . . 3  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( x  =/=  1  /\  ( A  /  x )  e.  NN )  ->  x  =  A )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
3715, 36bitrd 188 . 2  |-  ( ( A  e.  NN  /\  x  e.  NN )  ->  ( ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  ( (
1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
3837ralbidva 2502 1  |-  ( A  e.  NN  ->  ( A. x  e.  NN  ( ( A  /  x )  e.  NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  <  x  /\  x  <_  A  /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   A.wral 2484   class class class wbr 4044  (class class class)co 5944   RRcr 7924   1c1 7926    < clt 8107    <_ cle 8108    / cdiv 8745   NNcn 9036   ZZcz 9372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373
This theorem is referenced by:  infpnlem1  12682
  Copyright terms: Public domain W3C validator