ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq12d Unicode version

Theorem difeq12d 3278
Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.)
Hypotheses
Ref Expression
difeq12d.1  |-  ( ph  ->  A  =  B )
difeq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
difeq12d  |-  ( ph  ->  ( A  \  C
)  =  ( B 
\  D ) )

Proof of Theorem difeq12d
StepHypRef Expression
1 difeq12d.1 . . 3  |-  ( ph  ->  A  =  B )
21difeq1d 3276 . 2  |-  ( ph  ->  ( A  \  C
)  =  ( B 
\  C ) )
3 difeq12d.2 . . 3  |-  ( ph  ->  C  =  D )
43difeq2d 3277 . 2  |-  ( ph  ->  ( B  \  C
)  =  ( B 
\  D ) )
52, 4eqtrd 2226 1  |-  ( ph  ->  ( A  \  C
)  =  ( B 
\  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    \ cdif 3150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-dif 3155
This theorem is referenced by:  undifexmid  4222  exmidundif  4235  exmidundifim  4236
  Copyright terms: Public domain W3C validator