ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq1d Unicode version

Theorem difeq1d 3290
Description: Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
difeq1d  |-  ( ph  ->  ( A  \  C
)  =  ( B 
\  C ) )

Proof of Theorem difeq1d
StepHypRef Expression
1 difeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 difeq1 3284 . 2  |-  ( A  =  B  ->  ( A  \  C )  =  ( B  \  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  \  C
)  =  ( B 
\  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    \ cdif 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-dif 3168
This theorem is referenced by:  difeq12d  3292  diftpsn3  3774  phplem4  6952  phplem3g  6953  phplem4on  6964  en2other2  7304  isstruct2im  12842  isstruct2r  12843  setsfun0  12868  ptex  13096  cldval  14571  difopn  14580  cnclima  14695
  Copyright terms: Public domain W3C validator