ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq1d Unicode version

Theorem difeq1d 3244
Description: Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
difeq1d  |-  ( ph  ->  ( A  \  C
)  =  ( B 
\  C ) )

Proof of Theorem difeq1d
StepHypRef Expression
1 difeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 difeq1 3238 . 2  |-  ( A  =  B  ->  ( A  \  C )  =  ( B  \  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  \  C
)  =  ( B 
\  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    \ cdif 3118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-dif 3123
This theorem is referenced by:  difeq12d  3246  diftpsn3  3719  phplem4  6829  phplem3g  6830  phplem4on  6841  en2other2  7160  isstruct2im  12413  isstruct2r  12414  setsfun0  12439  cldval  12852  difopn  12861  cnclima  12976
  Copyright terms: Public domain W3C validator