| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidundifim | Unicode version | ||
| Description: Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4250 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.) |
| Ref | Expression |
|---|---|
| exmidundifim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undifss 3541 |
. . . . . . 7
| |
| 2 | 1 | biimpi 120 |
. . . . . 6
|
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | elun1 3340 |
. . . . . . . . . 10
| |
| 5 | 4 | adantl 277 |
. . . . . . . . 9
|
| 6 | simplr 528 |
. . . . . . . . . . 11
| |
| 7 | simpr 110 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | eldifd 3176 |
. . . . . . . . . 10
|
| 9 | elun2 3341 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | exmidexmid 4240 |
. . . . . . . . . . 11
| |
| 12 | exmiddc 838 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . 10
|
| 14 | 13 | adantr 276 |
. . . . . . . . 9
|
| 15 | 5, 10, 14 | mpjaodan 800 |
. . . . . . . 8
|
| 16 | 15 | ex 115 |
. . . . . . 7
|
| 17 | 16 | ssrdv 3199 |
. . . . . 6
|
| 18 | 17 | adantr 276 |
. . . . 5
|
| 19 | 3, 18 | eqssd 3210 |
. . . 4
|
| 20 | 19 | ex 115 |
. . 3
|
| 21 | 20 | alrimivv 1898 |
. 2
|
| 22 | vex 2775 |
. . . . . 6
| |
| 23 | p0ex 4232 |
. . . . . 6
| |
| 24 | sseq12 3218 |
. . . . . . . 8
| |
| 25 | simpl 109 |
. . . . . . . . . 10
| |
| 26 | simpr 110 |
. . . . . . . . . . 11
| |
| 27 | 26, 25 | difeq12d 3292 |
. . . . . . . . . 10
|
| 28 | 25, 27 | uneq12d 3328 |
. . . . . . . . 9
|
| 29 | 28, 26 | eqeq12d 2220 |
. . . . . . . 8
|
| 30 | 24, 29 | imbi12d 234 |
. . . . . . 7
|
| 31 | 30 | spc2gv 2864 |
. . . . . 6
|
| 32 | 22, 23, 31 | mp2an 426 |
. . . . 5
|
| 33 | 0ex 4171 |
. . . . . . . 8
| |
| 34 | 33 | snid 3664 |
. . . . . . 7
|
| 35 | eleq2 2269 |
. . . . . . 7
| |
| 36 | 34, 35 | mpbiri 168 |
. . . . . 6
|
| 37 | eldifn 3296 |
. . . . . . . 8
| |
| 38 | 37 | orim2i 763 |
. . . . . . 7
|
| 39 | elun 3314 |
. . . . . . 7
| |
| 40 | df-dc 837 |
. . . . . . 7
| |
| 41 | 38, 39, 40 | 3imtr4i 201 |
. . . . . 6
|
| 42 | 36, 41 | syl 14 |
. . . . 5
|
| 43 | 32, 42 | syl6 33 |
. . . 4
|
| 44 | 43 | alrimiv 1897 |
. . 3
|
| 45 | df-exmid 4239 |
. . 3
| |
| 46 | 44, 45 | sylibr 134 |
. 2
|
| 47 | 21, 46 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-exmid 4239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |