Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidundifim | Unicode version |
Description: Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4201 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.) |
Ref | Expression |
---|---|
exmidundifim | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undifss 3501 | . . . . . . 7 | |
2 | 1 | biimpi 120 | . . . . . 6 |
3 | 2 | adantl 277 | . . . . 5 EXMID |
4 | elun1 3300 | . . . . . . . . . 10 | |
5 | 4 | adantl 277 | . . . . . . . . 9 EXMID |
6 | simplr 528 | . . . . . . . . . . 11 EXMID | |
7 | simpr 110 | . . . . . . . . . . 11 EXMID | |
8 | 6, 7 | eldifd 3137 | . . . . . . . . . 10 EXMID |
9 | elun2 3301 | . . . . . . . . . 10 | |
10 | 8, 9 | syl 14 | . . . . . . . . 9 EXMID |
11 | exmidexmid 4191 | . . . . . . . . . . 11 EXMID DECID | |
12 | exmiddc 836 | . . . . . . . . . . 11 DECID | |
13 | 11, 12 | syl 14 | . . . . . . . . . 10 EXMID |
14 | 13 | adantr 276 | . . . . . . . . 9 EXMID |
15 | 5, 10, 14 | mpjaodan 798 | . . . . . . . 8 EXMID |
16 | 15 | ex 115 | . . . . . . 7 EXMID |
17 | 16 | ssrdv 3159 | . . . . . 6 EXMID |
18 | 17 | adantr 276 | . . . . 5 EXMID |
19 | 3, 18 | eqssd 3170 | . . . 4 EXMID |
20 | 19 | ex 115 | . . 3 EXMID |
21 | 20 | alrimivv 1873 | . 2 EXMID |
22 | vex 2738 | . . . . . 6 | |
23 | p0ex 4183 | . . . . . 6 | |
24 | sseq12 3178 | . . . . . . . 8 | |
25 | simpl 109 | . . . . . . . . . 10 | |
26 | simpr 110 | . . . . . . . . . . 11 | |
27 | 26, 25 | difeq12d 3252 | . . . . . . . . . 10 |
28 | 25, 27 | uneq12d 3288 | . . . . . . . . 9 |
29 | 28, 26 | eqeq12d 2190 | . . . . . . . 8 |
30 | 24, 29 | imbi12d 234 | . . . . . . 7 |
31 | 30 | spc2gv 2826 | . . . . . 6 |
32 | 22, 23, 31 | mp2an 426 | . . . . 5 |
33 | 0ex 4125 | . . . . . . . 8 | |
34 | 33 | snid 3620 | . . . . . . 7 |
35 | eleq2 2239 | . . . . . . 7 | |
36 | 34, 35 | mpbiri 168 | . . . . . 6 |
37 | eldifn 3256 | . . . . . . . 8 | |
38 | 37 | orim2i 761 | . . . . . . 7 |
39 | elun 3274 | . . . . . . 7 | |
40 | df-dc 835 | . . . . . . 7 DECID | |
41 | 38, 39, 40 | 3imtr4i 201 | . . . . . 6 DECID |
42 | 36, 41 | syl 14 | . . . . 5 DECID |
43 | 32, 42 | syl6 33 | . . . 4 DECID |
44 | 43 | alrimiv 1872 | . . 3 DECID |
45 | df-exmid 4190 | . . 3 EXMID DECID | |
46 | 44, 45 | sylibr 134 | . 2 EXMID |
47 | 21, 46 | impbii 126 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 DECID wdc 834 wal 1351 wceq 1353 wcel 2146 cvv 2735 cdif 3124 cun 3125 wss 3127 c0 3420 csn 3589 EXMIDwem 4189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-exmid 4190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |