| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidundifim | Unicode version | ||
| Description: Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4266 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.) |
| Ref | Expression |
|---|---|
| exmidundifim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undifss 3549 |
. . . . . . 7
| |
| 2 | 1 | biimpi 120 |
. . . . . 6
|
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | elun1 3348 |
. . . . . . . . . 10
| |
| 5 | 4 | adantl 277 |
. . . . . . . . 9
|
| 6 | simplr 528 |
. . . . . . . . . . 11
| |
| 7 | simpr 110 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | eldifd 3184 |
. . . . . . . . . 10
|
| 9 | elun2 3349 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | exmidexmid 4256 |
. . . . . . . . . . 11
| |
| 12 | exmiddc 838 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . 10
|
| 14 | 13 | adantr 276 |
. . . . . . . . 9
|
| 15 | 5, 10, 14 | mpjaodan 800 |
. . . . . . . 8
|
| 16 | 15 | ex 115 |
. . . . . . 7
|
| 17 | 16 | ssrdv 3207 |
. . . . . 6
|
| 18 | 17 | adantr 276 |
. . . . 5
|
| 19 | 3, 18 | eqssd 3218 |
. . . 4
|
| 20 | 19 | ex 115 |
. . 3
|
| 21 | 20 | alrimivv 1899 |
. 2
|
| 22 | vex 2779 |
. . . . . 6
| |
| 23 | p0ex 4248 |
. . . . . 6
| |
| 24 | sseq12 3226 |
. . . . . . . 8
| |
| 25 | simpl 109 |
. . . . . . . . . 10
| |
| 26 | simpr 110 |
. . . . . . . . . . 11
| |
| 27 | 26, 25 | difeq12d 3300 |
. . . . . . . . . 10
|
| 28 | 25, 27 | uneq12d 3336 |
. . . . . . . . 9
|
| 29 | 28, 26 | eqeq12d 2222 |
. . . . . . . 8
|
| 30 | 24, 29 | imbi12d 234 |
. . . . . . 7
|
| 31 | 30 | spc2gv 2871 |
. . . . . 6
|
| 32 | 22, 23, 31 | mp2an 426 |
. . . . 5
|
| 33 | 0ex 4187 |
. . . . . . . 8
| |
| 34 | 33 | snid 3674 |
. . . . . . 7
|
| 35 | eleq2 2271 |
. . . . . . 7
| |
| 36 | 34, 35 | mpbiri 168 |
. . . . . 6
|
| 37 | eldifn 3304 |
. . . . . . . 8
| |
| 38 | 37 | orim2i 763 |
. . . . . . 7
|
| 39 | elun 3322 |
. . . . . . 7
| |
| 40 | df-dc 837 |
. . . . . . 7
| |
| 41 | 38, 39, 40 | 3imtr4i 201 |
. . . . . 6
|
| 42 | 36, 41 | syl 14 |
. . . . 5
|
| 43 | 32, 42 | syl6 33 |
. . . 4
|
| 44 | 43 | alrimiv 1898 |
. . 3
|
| 45 | df-exmid 4255 |
. . 3
| |
| 46 | 44, 45 | sylibr 134 |
. 2
|
| 47 | 21, 46 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-exmid 4255 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |