| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exmidundifim | Unicode version | ||
| Description: Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4239 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| exmidundifim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | undifss 3531 | 
. . . . . . 7
 | |
| 2 | 1 | biimpi 120 | 
. . . . . 6
 | 
| 3 | 2 | adantl 277 | 
. . . . 5
 | 
| 4 | elun1 3330 | 
. . . . . . . . . 10
 | |
| 5 | 4 | adantl 277 | 
. . . . . . . . 9
 | 
| 6 | simplr 528 | 
. . . . . . . . . . 11
 | |
| 7 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 8 | 6, 7 | eldifd 3167 | 
. . . . . . . . . 10
 | 
| 9 | elun2 3331 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | syl 14 | 
. . . . . . . . 9
 | 
| 11 | exmidexmid 4229 | 
. . . . . . . . . . 11
 | |
| 12 | exmiddc 837 | 
. . . . . . . . . . 11
 | |
| 13 | 11, 12 | syl 14 | 
. . . . . . . . . 10
 | 
| 14 | 13 | adantr 276 | 
. . . . . . . . 9
 | 
| 15 | 5, 10, 14 | mpjaodan 799 | 
. . . . . . . 8
 | 
| 16 | 15 | ex 115 | 
. . . . . . 7
 | 
| 17 | 16 | ssrdv 3189 | 
. . . . . 6
 | 
| 18 | 17 | adantr 276 | 
. . . . 5
 | 
| 19 | 3, 18 | eqssd 3200 | 
. . . 4
 | 
| 20 | 19 | ex 115 | 
. . 3
 | 
| 21 | 20 | alrimivv 1889 | 
. 2
 | 
| 22 | vex 2766 | 
. . . . . 6
 | |
| 23 | p0ex 4221 | 
. . . . . 6
 | |
| 24 | sseq12 3208 | 
. . . . . . . 8
 | |
| 25 | simpl 109 | 
. . . . . . . . . 10
 | |
| 26 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 27 | 26, 25 | difeq12d 3282 | 
. . . . . . . . . 10
 | 
| 28 | 25, 27 | uneq12d 3318 | 
. . . . . . . . 9
 | 
| 29 | 28, 26 | eqeq12d 2211 | 
. . . . . . . 8
 | 
| 30 | 24, 29 | imbi12d 234 | 
. . . . . . 7
 | 
| 31 | 30 | spc2gv 2855 | 
. . . . . 6
 | 
| 32 | 22, 23, 31 | mp2an 426 | 
. . . . 5
 | 
| 33 | 0ex 4160 | 
. . . . . . . 8
 | |
| 34 | 33 | snid 3653 | 
. . . . . . 7
 | 
| 35 | eleq2 2260 | 
. . . . . . 7
 | |
| 36 | 34, 35 | mpbiri 168 | 
. . . . . 6
 | 
| 37 | eldifn 3286 | 
. . . . . . . 8
 | |
| 38 | 37 | orim2i 762 | 
. . . . . . 7
 | 
| 39 | elun 3304 | 
. . . . . . 7
 | |
| 40 | df-dc 836 | 
. . . . . . 7
 | |
| 41 | 38, 39, 40 | 3imtr4i 201 | 
. . . . . 6
 | 
| 42 | 36, 41 | syl 14 | 
. . . . 5
 | 
| 43 | 32, 42 | syl6 33 | 
. . . 4
 | 
| 44 | 43 | alrimiv 1888 | 
. . 3
 | 
| 45 | df-exmid 4228 | 
. . 3
 | |
| 46 | 44, 45 | sylibr 134 | 
. 2
 | 
| 47 | 21, 46 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-exmid 4228 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |