| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidundifim | Unicode version | ||
| Description: Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4289 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.) |
| Ref | Expression |
|---|---|
| exmidundifim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undifss 3572 |
. . . . . . 7
| |
| 2 | 1 | biimpi 120 |
. . . . . 6
|
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | elun1 3371 |
. . . . . . . . . 10
| |
| 5 | 4 | adantl 277 |
. . . . . . . . 9
|
| 6 | simplr 528 |
. . . . . . . . . . 11
| |
| 7 | simpr 110 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | eldifd 3207 |
. . . . . . . . . 10
|
| 9 | elun2 3372 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | exmidexmid 4279 |
. . . . . . . . . . 11
| |
| 12 | exmiddc 841 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . 10
|
| 14 | 13 | adantr 276 |
. . . . . . . . 9
|
| 15 | 5, 10, 14 | mpjaodan 803 |
. . . . . . . 8
|
| 16 | 15 | ex 115 |
. . . . . . 7
|
| 17 | 16 | ssrdv 3230 |
. . . . . 6
|
| 18 | 17 | adantr 276 |
. . . . 5
|
| 19 | 3, 18 | eqssd 3241 |
. . . 4
|
| 20 | 19 | ex 115 |
. . 3
|
| 21 | 20 | alrimivv 1921 |
. 2
|
| 22 | vex 2802 |
. . . . . 6
| |
| 23 | p0ex 4271 |
. . . . . 6
| |
| 24 | sseq12 3249 |
. . . . . . . 8
| |
| 25 | simpl 109 |
. . . . . . . . . 10
| |
| 26 | simpr 110 |
. . . . . . . . . . 11
| |
| 27 | 26, 25 | difeq12d 3323 |
. . . . . . . . . 10
|
| 28 | 25, 27 | uneq12d 3359 |
. . . . . . . . 9
|
| 29 | 28, 26 | eqeq12d 2244 |
. . . . . . . 8
|
| 30 | 24, 29 | imbi12d 234 |
. . . . . . 7
|
| 31 | 30 | spc2gv 2894 |
. . . . . 6
|
| 32 | 22, 23, 31 | mp2an 426 |
. . . . 5
|
| 33 | 0ex 4210 |
. . . . . . . 8
| |
| 34 | 33 | snid 3697 |
. . . . . . 7
|
| 35 | eleq2 2293 |
. . . . . . 7
| |
| 36 | 34, 35 | mpbiri 168 |
. . . . . 6
|
| 37 | eldifn 3327 |
. . . . . . . 8
| |
| 38 | 37 | orim2i 766 |
. . . . . . 7
|
| 39 | elun 3345 |
. . . . . . 7
| |
| 40 | df-dc 840 |
. . . . . . 7
| |
| 41 | 38, 39, 40 | 3imtr4i 201 |
. . . . . 6
|
| 42 | 36, 41 | syl 14 |
. . . . 5
|
| 43 | 32, 42 | syl6 33 |
. . . 4
|
| 44 | 43 | alrimiv 1920 |
. . 3
|
| 45 | df-exmid 4278 |
. . 3
| |
| 46 | 44, 45 | sylibr 134 |
. 2
|
| 47 | 21, 46 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-exmid 4278 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |