ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2d Unicode version

Theorem difeq2d 3255
Description: Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
difeq2d  |-  ( ph  ->  ( C  \  A
)  =  ( C 
\  B ) )

Proof of Theorem difeq2d
StepHypRef Expression
1 difeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 difeq2 3249 . 2  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  \  A
)  =  ( C 
\  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    \ cdif 3128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-ral 2460  df-rab 2464  df-dif 3133
This theorem is referenced by:  difeq12d  3256  exmid1stab  4210  phplem3  6856  phplem4  6857  phplem3g  6858  phplem4dom  6864  phplem4on  6869  fidifsnen  6872  xpfi  6931  sbthlem2  6959  sbthlemi3  6960  isbth  6968  ismkvnex  7155  setsvalg  12494  setsvala  12495
  Copyright terms: Public domain W3C validator