| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difeq2d | Unicode version | ||
| Description: Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1d.1 |
|
| Ref | Expression |
|---|---|
| difeq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1d.1 |
. 2
| |
| 2 | difeq2 3293 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-rab 2495 df-dif 3176 |
| This theorem is referenced by: difeq12d 3300 exmid1stab 4268 phplem3 6976 phplem4 6977 phplem3g 6978 phplem4dom 6984 phplem4on 6990 fidifsnen 6993 xpfi 7055 sbthlem2 7086 sbthlemi3 7087 isbth 7095 ismkvnex 7283 setsvalg 12977 setsvala 12978 |
| Copyright terms: Public domain | W3C validator |