ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2d Unicode version

Theorem difeq2d 3291
Description: Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
difeq2d  |-  ( ph  ->  ( C  \  A
)  =  ( C 
\  B ) )

Proof of Theorem difeq2d
StepHypRef Expression
1 difeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 difeq2 3285 . 2  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  \  A
)  =  ( C 
\  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    \ cdif 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489  df-rab 2493  df-dif 3168
This theorem is referenced by:  difeq12d  3292  exmid1stab  4253  phplem3  6953  phplem4  6954  phplem3g  6955  phplem4dom  6961  phplem4on  6966  fidifsnen  6969  xpfi  7031  sbthlem2  7062  sbthlemi3  7063  isbth  7071  ismkvnex  7259  setsvalg  12895  setsvala  12896
  Copyright terms: Public domain W3C validator