Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difeq2d | Unicode version |
Description: Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1d.1 |
Ref | Expression |
---|---|
difeq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1d.1 | . 2 | |
2 | difeq2 3234 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cdif 3113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-rab 2453 df-dif 3118 |
This theorem is referenced by: difeq12d 3241 phplem3 6820 phplem4 6821 phplem3g 6822 phplem4dom 6828 phplem4on 6833 fidifsnen 6836 xpfi 6895 sbthlem2 6923 sbthlemi3 6924 isbth 6932 ismkvnex 7119 setsvalg 12424 setsvala 12425 exmid1stab 13880 |
Copyright terms: Public domain | W3C validator |