ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2d Unicode version

Theorem difeq2d 3265
Description: Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
difeq2d  |-  ( ph  ->  ( C  \  A
)  =  ( C 
\  B ) )

Proof of Theorem difeq2d
StepHypRef Expression
1 difeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 difeq2 3259 . 2  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  \  A
)  =  ( C 
\  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    \ cdif 3138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-ral 2470  df-rab 2474  df-dif 3143
This theorem is referenced by:  difeq12d  3266  exmid1stab  4220  phplem3  6868  phplem4  6869  phplem3g  6870  phplem4dom  6876  phplem4on  6881  fidifsnen  6884  xpfi  6943  sbthlem2  6971  sbthlemi3  6972  isbth  6980  ismkvnex  7167  setsvalg  12506  setsvala  12507
  Copyright terms: Public domain W3C validator