ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeqri Unicode version

Theorem difeqri 3242
Description: Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypothesis
Ref Expression
difeqri.1  |-  ( ( x  e.  A  /\  -.  x  e.  B
)  <->  x  e.  C
)
Assertion
Ref Expression
difeqri  |-  ( A 
\  B )  =  C
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem difeqri
StepHypRef Expression
1 eldif 3125 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2 difeqri.1 . . 3  |-  ( ( x  e.  A  /\  -.  x  e.  B
)  <->  x  e.  C
)
31, 2bitri 183 . 2  |-  ( x  e.  ( A  \  B )  <->  x  e.  C )
43eqriv 2162 1  |-  ( A 
\  B )  =  C
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    \ cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118
This theorem is referenced by:  difdif  3247  ddifnel  3253  difab  3391
  Copyright terms: Public domain W3C validator