ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeqri Unicode version

Theorem difeqri 3279
Description: Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypothesis
Ref Expression
difeqri.1  |-  ( ( x  e.  A  /\  -.  x  e.  B
)  <->  x  e.  C
)
Assertion
Ref Expression
difeqri  |-  ( A 
\  B )  =  C
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem difeqri
StepHypRef Expression
1 eldif 3162 . . 3  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2 difeqri.1 . . 3  |-  ( ( x  e.  A  /\  -.  x  e.  B
)  <->  x  e.  C
)
31, 2bitri 184 . 2  |-  ( x  e.  ( A  \  B )  <->  x  e.  C )
43eqriv 2190 1  |-  ( A 
\  B )  =  C
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    \ cdif 3150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155
This theorem is referenced by:  difdif  3284  ddifnel  3290  difab  3428
  Copyright terms: Public domain W3C validator