ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidundif Unicode version

Theorem exmidundif 4218
Description: Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3515 and undifdcss 6935 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmidundif  |-  (EXMID  <->  A. x A. y ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y ) )
Distinct variable group:    x, y

Proof of Theorem exmidundif
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 undifss 3515 . . . . . . . 8  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  C_  y
)
21biimpi 120 . . . . . . 7  |-  ( x 
C_  y  ->  (
x  u.  ( y 
\  x ) ) 
C_  y )
32adantl 277 . . . . . 6  |-  ( (EXMID  /\  x  C_  y )  ->  ( x  u.  (
y  \  x )
)  C_  y )
4 elun1 3314 . . . . . . . . . . 11  |-  ( z  e.  x  ->  z  e.  ( x  u.  (
y  \  x )
) )
54adantl 277 . . . . . . . . . 10  |-  ( ( (EXMID 
/\  z  e.  y )  /\  z  e.  x )  ->  z  e.  ( x  u.  (
y  \  x )
) )
6 simplr 528 . . . . . . . . . . . 12  |-  ( ( (EXMID 
/\  z  e.  y )  /\  -.  z  e.  x )  ->  z  e.  y )
7 simpr 110 . . . . . . . . . . . 12  |-  ( ( (EXMID 
/\  z  e.  y )  /\  -.  z  e.  x )  ->  -.  z  e.  x )
86, 7eldifd 3151 . . . . . . . . . . 11  |-  ( ( (EXMID 
/\  z  e.  y )  /\  -.  z  e.  x )  ->  z  e.  ( y  \  x
) )
9 elun2 3315 . . . . . . . . . . 11  |-  ( z  e.  ( y  \  x )  ->  z  e.  ( x  u.  (
y  \  x )
) )
108, 9syl 14 . . . . . . . . . 10  |-  ( ( (EXMID 
/\  z  e.  y )  /\  -.  z  e.  x )  ->  z  e.  ( x  u.  (
y  \  x )
) )
11 exmidexmid 4208 . . . . . . . . . . . 12  |-  (EXMID  -> DECID  z  e.  x
)
12 exmiddc 837 . . . . . . . . . . . 12  |-  (DECID  z  e.  x  ->  ( z  e.  x  \/  -.  z  e.  x )
)
1311, 12syl 14 . . . . . . . . . . 11  |-  (EXMID  ->  (
z  e.  x  \/ 
-.  z  e.  x
) )
1413adantr 276 . . . . . . . . . 10  |-  ( (EXMID  /\  z  e.  y )  ->  ( z  e.  x  \/  -.  z  e.  x ) )
155, 10, 14mpjaodan 799 . . . . . . . . 9  |-  ( (EXMID  /\  z  e.  y )  ->  z  e.  ( x  u.  ( y 
\  x ) ) )
1615ex 115 . . . . . . . 8  |-  (EXMID  ->  (
z  e.  y  -> 
z  e.  ( x  u.  ( y  \  x ) ) ) )
1716ssrdv 3173 . . . . . . 7  |-  (EXMID  ->  y  C_  ( x  u.  (
y  \  x )
) )
1817adantr 276 . . . . . 6  |-  ( (EXMID  /\  x  C_  y )  ->  y  C_  ( x  u.  ( y  \  x
) ) )
193, 18eqssd 3184 . . . . 5  |-  ( (EXMID  /\  x  C_  y )  ->  ( x  u.  (
y  \  x )
)  =  y )
2019ex 115 . . . 4  |-  (EXMID  ->  (
x  C_  y  ->  ( x  u.  ( y 
\  x ) )  =  y ) )
21 ssun1 3310 . . . . 5  |-  x  C_  ( x  u.  (
y  \  x )
)
22 sseq2 3191 . . . . 5  |-  ( ( x  u.  ( y 
\  x ) )  =  y  ->  (
x  C_  ( x  u.  ( y  \  x
) )  <->  x  C_  y
) )
2321, 22mpbii 148 . . . 4  |-  ( ( x  u.  ( y 
\  x ) )  =  y  ->  x  C_  y )
2420, 23impbid1 142 . . 3  |-  (EXMID  ->  (
x  C_  y  <->  ( x  u.  ( y  \  x
) )  =  y ) )
2524alrimivv 1885 . 2  |-  (EXMID  ->  A. x A. y ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y ) )
26 vex 2752 . . . . . 6  |-  z  e. 
_V
27 p0ex 4200 . . . . . 6  |-  { (/) }  e.  _V
28 sseq12 3192 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( x  C_  y 
<->  z  C_  { (/) } ) )
29 simpl 109 . . . . . . . . . 10  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  x  =  z )
30 simpr 110 . . . . . . . . . . 11  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  y  =  { (/)
} )
3130, 29difeq12d 3266 . . . . . . . . . 10  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( y  \  x )  =  ( { (/) }  \  z
) )
3229, 31uneq12d 3302 . . . . . . . . 9  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( x  u.  ( y  \  x
) )  =  ( z  u.  ( {
(/) }  \  z
) ) )
3332, 30eqeq12d 2202 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( ( x  u.  ( y  \  x ) )  =  y  <->  ( z  u.  ( { (/) }  \ 
z ) )  =  { (/) } ) )
3428, 33bibi12d 235 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  <->  ( z  C_  {
(/) }  <->  ( z  u.  ( { (/) }  \ 
z ) )  =  { (/) } ) ) )
3534spc2gv 2840 . . . . . 6  |-  ( ( z  e.  _V  /\  {
(/) }  e.  _V )  ->  ( A. x A. y ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y )  ->  ( z  C_  {
(/) }  <->  ( z  u.  ( { (/) }  \ 
z ) )  =  { (/) } ) ) )
3626, 27, 35mp2an 426 . . . . 5  |-  ( A. x A. y ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  ->  ( z  C_ 
{ (/) }  <->  ( z  u.  ( { (/) }  \ 
z ) )  =  { (/) } ) )
37 0ex 4142 . . . . . . . 8  |-  (/)  e.  _V
3837snid 3635 . . . . . . 7  |-  (/)  e.  { (/)
}
39 eleq2 2251 . . . . . . 7  |-  ( ( z  u.  ( {
(/) }  \  z
) )  =  { (/)
}  ->  ( (/)  e.  ( z  u.  ( {
(/) }  \  z
) )  <->  (/)  e.  { (/)
} ) )
4038, 39mpbiri 168 . . . . . 6  |-  ( ( z  u.  ( {
(/) }  \  z
) )  =  { (/)
}  ->  (/)  e.  ( z  u.  ( {
(/) }  \  z
) ) )
41 eldifn 3270 . . . . . . . 8  |-  ( (/)  e.  ( { (/) }  \ 
z )  ->  -.  (/) 
e.  z )
4241orim2i 762 . . . . . . 7  |-  ( (
(/)  e.  z  \/  (/) 
e.  ( { (/) } 
\  z ) )  ->  ( (/)  e.  z  \/  -.  (/)  e.  z ) )
43 elun 3288 . . . . . . 7  |-  ( (/)  e.  ( z  u.  ( { (/) }  \  z
) )  <->  ( (/)  e.  z  \/  (/)  e.  ( {
(/) }  \  z
) ) )
44 df-dc 836 . . . . . . 7  |-  (DECID  (/)  e.  z  <-> 
( (/)  e.  z  \/ 
-.  (/)  e.  z ) )
4542, 43, 443imtr4i 201 . . . . . 6  |-  ( (/)  e.  ( z  u.  ( { (/) }  \  z
) )  -> DECID  (/)  e.  z )
4640, 45syl 14 . . . . 5  |-  ( ( z  u.  ( {
(/) }  \  z
) )  =  { (/)
}  -> DECID  (/)  e.  z )
4736, 46biimtrdi 163 . . . 4  |-  ( A. x A. y ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  ->  ( z  C_ 
{ (/) }  -> DECID  (/)  e.  z ) )
4847alrimiv 1884 . . 3  |-  ( A. x A. y ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  ->  A. z
( z  C_  { (/) }  -> DECID  (/) 
e.  z ) )
49 df-exmid 4207 . . 3  |-  (EXMID  <->  A. z
( z  C_  { (/) }  -> DECID  (/) 
e.  z ) )
5048, 49sylibr 134 . 2  |-  ( A. x A. y ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  -> EXMID )
5125, 50impbii 126 1  |-  (EXMID  <->  A. x A. y ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835   A.wal 1361    = wceq 1363    e. wcel 2158   _Vcvv 2749    \ cdif 3138    u. cun 3139    C_ wss 3141   (/)c0 3434   {csn 3604  EXMIDwem 4206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-exmid 4207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator