ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidundif Unicode version

Theorem exmidundif 4067
Description: Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3390 and undifdcss 6740 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmidundif  |-  (EXMID  <->  A. x A. y ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y ) )
Distinct variable group:    x, y

Proof of Theorem exmidundif
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 undifss 3390 . . . . . . . 8  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  C_  y
)
21biimpi 119 . . . . . . 7  |-  ( x 
C_  y  ->  (
x  u.  ( y 
\  x ) ) 
C_  y )
32adantl 273 . . . . . 6  |-  ( (EXMID  /\  x  C_  y )  ->  ( x  u.  (
y  \  x )
)  C_  y )
4 elun1 3190 . . . . . . . . . . 11  |-  ( z  e.  x  ->  z  e.  ( x  u.  (
y  \  x )
) )
54adantl 273 . . . . . . . . . 10  |-  ( ( (EXMID 
/\  z  e.  y )  /\  z  e.  x )  ->  z  e.  ( x  u.  (
y  \  x )
) )
6 simplr 500 . . . . . . . . . . . 12  |-  ( ( (EXMID 
/\  z  e.  y )  /\  -.  z  e.  x )  ->  z  e.  y )
7 simpr 109 . . . . . . . . . . . 12  |-  ( ( (EXMID 
/\  z  e.  y )  /\  -.  z  e.  x )  ->  -.  z  e.  x )
86, 7eldifd 3031 . . . . . . . . . . 11  |-  ( ( (EXMID 
/\  z  e.  y )  /\  -.  z  e.  x )  ->  z  e.  ( y  \  x
) )
9 elun2 3191 . . . . . . . . . . 11  |-  ( z  e.  ( y  \  x )  ->  z  e.  ( x  u.  (
y  \  x )
) )
108, 9syl 14 . . . . . . . . . 10  |-  ( ( (EXMID 
/\  z  e.  y )  /\  -.  z  e.  x )  ->  z  e.  ( x  u.  (
y  \  x )
) )
11 exmidexmid 4060 . . . . . . . . . . . 12  |-  (EXMID  -> DECID  z  e.  x
)
12 exmiddc 788 . . . . . . . . . . . 12  |-  (DECID  z  e.  x  ->  ( z  e.  x  \/  -.  z  e.  x )
)
1311, 12syl 14 . . . . . . . . . . 11  |-  (EXMID  ->  (
z  e.  x  \/ 
-.  z  e.  x
) )
1413adantr 272 . . . . . . . . . 10  |-  ( (EXMID  /\  z  e.  y )  ->  ( z  e.  x  \/  -.  z  e.  x ) )
155, 10, 14mpjaodan 753 . . . . . . . . 9  |-  ( (EXMID  /\  z  e.  y )  ->  z  e.  ( x  u.  ( y 
\  x ) ) )
1615ex 114 . . . . . . . 8  |-  (EXMID  ->  (
z  e.  y  -> 
z  e.  ( x  u.  ( y  \  x ) ) ) )
1716ssrdv 3053 . . . . . . 7  |-  (EXMID  ->  y  C_  ( x  u.  (
y  \  x )
) )
1817adantr 272 . . . . . 6  |-  ( (EXMID  /\  x  C_  y )  ->  y  C_  ( x  u.  ( y  \  x
) ) )
193, 18eqssd 3064 . . . . 5  |-  ( (EXMID  /\  x  C_  y )  ->  ( x  u.  (
y  \  x )
)  =  y )
2019ex 114 . . . 4  |-  (EXMID  ->  (
x  C_  y  ->  ( x  u.  ( y 
\  x ) )  =  y ) )
21 ssun1 3186 . . . . 5  |-  x  C_  ( x  u.  (
y  \  x )
)
22 sseq2 3071 . . . . 5  |-  ( ( x  u.  ( y 
\  x ) )  =  y  ->  (
x  C_  ( x  u.  ( y  \  x
) )  <->  x  C_  y
) )
2321, 22mpbii 147 . . . 4  |-  ( ( x  u.  ( y 
\  x ) )  =  y  ->  x  C_  y )
2420, 23impbid1 141 . . 3  |-  (EXMID  ->  (
x  C_  y  <->  ( x  u.  ( y  \  x
) )  =  y ) )
2524alrimivv 1814 . 2  |-  (EXMID  ->  A. x A. y ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y ) )
26 vex 2644 . . . . . 6  |-  z  e. 
_V
27 p0ex 4052 . . . . . 6  |-  { (/) }  e.  _V
28 sseq12 3072 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( x  C_  y 
<->  z  C_  { (/) } ) )
29 simpl 108 . . . . . . . . . 10  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  x  =  z )
30 simpr 109 . . . . . . . . . . 11  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  y  =  { (/)
} )
3130, 29difeq12d 3142 . . . . . . . . . 10  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( y  \  x )  =  ( { (/) }  \  z
) )
3229, 31uneq12d 3178 . . . . . . . . 9  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( x  u.  ( y  \  x
) )  =  ( z  u.  ( {
(/) }  \  z
) ) )
3332, 30eqeq12d 2114 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( ( x  u.  ( y  \  x ) )  =  y  <->  ( z  u.  ( { (/) }  \ 
z ) )  =  { (/) } ) )
3428, 33bibi12d 234 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  { (/) } )  ->  ( ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  <->  ( z  C_  {
(/) }  <->  ( z  u.  ( { (/) }  \ 
z ) )  =  { (/) } ) ) )
3534spc2gv 2731 . . . . . 6  |-  ( ( z  e.  _V  /\  {
(/) }  e.  _V )  ->  ( A. x A. y ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y )  ->  ( z  C_  {
(/) }  <->  ( z  u.  ( { (/) }  \ 
z ) )  =  { (/) } ) ) )
3626, 27, 35mp2an 420 . . . . 5  |-  ( A. x A. y ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  ->  ( z  C_ 
{ (/) }  <->  ( z  u.  ( { (/) }  \ 
z ) )  =  { (/) } ) )
37 0ex 3995 . . . . . . . 8  |-  (/)  e.  _V
3837snid 3503 . . . . . . 7  |-  (/)  e.  { (/)
}
39 eleq2 2163 . . . . . . 7  |-  ( ( z  u.  ( {
(/) }  \  z
) )  =  { (/)
}  ->  ( (/)  e.  ( z  u.  ( {
(/) }  \  z
) )  <->  (/)  e.  { (/)
} ) )
4038, 39mpbiri 167 . . . . . 6  |-  ( ( z  u.  ( {
(/) }  \  z
) )  =  { (/)
}  ->  (/)  e.  ( z  u.  ( {
(/) }  \  z
) ) )
41 eldifn 3146 . . . . . . . 8  |-  ( (/)  e.  ( { (/) }  \ 
z )  ->  -.  (/) 
e.  z )
4241orim2i 719 . . . . . . 7  |-  ( (
(/)  e.  z  \/  (/) 
e.  ( { (/) } 
\  z ) )  ->  ( (/)  e.  z  \/  -.  (/)  e.  z ) )
43 elun 3164 . . . . . . 7  |-  ( (/)  e.  ( z  u.  ( { (/) }  \  z
) )  <->  ( (/)  e.  z  \/  (/)  e.  ( {
(/) }  \  z
) ) )
44 df-dc 787 . . . . . . 7  |-  (DECID  (/)  e.  z  <-> 
( (/)  e.  z  \/ 
-.  (/)  e.  z ) )
4542, 43, 443imtr4i 200 . . . . . 6  |-  ( (/)  e.  ( z  u.  ( { (/) }  \  z
) )  -> DECID  (/)  e.  z )
4640, 45syl 14 . . . . 5  |-  ( ( z  u.  ( {
(/) }  \  z
) )  =  { (/)
}  -> DECID  (/)  e.  z )
4736, 46syl6bi 162 . . . 4  |-  ( A. x A. y ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  ->  ( z  C_ 
{ (/) }  -> DECID  (/)  e.  z ) )
4847alrimiv 1813 . . 3  |-  ( A. x A. y ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  ->  A. z
( z  C_  { (/) }  -> DECID  (/) 
e.  z ) )
49 df-exmid 4059 . . 3  |-  (EXMID  <->  A. z
( z  C_  { (/) }  -> DECID  (/) 
e.  z ) )
5048, 49sylibr 133 . 2  |-  ( A. x A. y ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )  -> EXMID )
5125, 50impbii 125 1  |-  (EXMID  <->  A. x A. y ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 670  DECID wdc 786   A.wal 1297    = wceq 1299    e. wcel 1448   _Vcvv 2641    \ cdif 3018    u. cun 3019    C_ wss 3021   (/)c0 3310   {csn 3474  EXMIDwem 4058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038
This theorem depends on definitions:  df-bi 116  df-dc 787  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rab 2384  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-exmid 4059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator