ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difid Unicode version

Theorem difid 3537
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
difid  |-  ( A 
\  A )  =  (/)

Proof of Theorem difid
StepHypRef Expression
1 ssid 3221 . 2  |-  A  C_  A
2 ssdif0im 3533 . 2  |-  ( A 
C_  A  ->  ( A  \  A )  =  (/) )
31, 2ax-mp 5 1  |-  ( A 
\  A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    \ cdif 3171    C_ wss 3174   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469
This theorem is referenced by:  dif0  3539  difun2  3548  diftpsn3  3785  2oconcl  6548  ismkvnex  7283  topcld  14696
  Copyright terms: Public domain W3C validator