ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjeq2 Unicode version

Theorem disjeq2 4039
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq2  |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A  B  <-> Disj  x  e.  A  C ) )

Proof of Theorem disjeq2
StepHypRef Expression
1 eqimss2 3256 . . . 4  |-  ( B  =  C  ->  C  C_  B )
21ralimi 2571 . . 3  |-  ( A. x  e.  A  B  =  C  ->  A. x  e.  A  C  C_  B
)
3 disjss2 4038 . . 3  |-  ( A. x  e.  A  C  C_  B  ->  (Disj  x  e.  A  B  -> Disj  x  e.  A  C ) )
42, 3syl 14 . 2  |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A  B  -> Disj  x  e.  A  C )
)
5 eqimss 3255 . . . 4  |-  ( B  =  C  ->  B  C_  C )
65ralimi 2571 . . 3  |-  ( A. x  e.  A  B  =  C  ->  A. x  e.  A  B  C_  C
)
7 disjss2 4038 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B ) )
86, 7syl 14 . 2  |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A  C  -> Disj  x  e.  A  B )
)
94, 8impbid 129 1  |-  ( A. x  e.  A  B  =  C  ->  (Disj  x  e.  A  B  <-> Disj  x  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   A.wral 2486    C_ wss 3174  Disj wdisj 4035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-rmo 2494  df-in 3180  df-ss 3187  df-disj 4036
This theorem is referenced by:  disjeq2dv  4040
  Copyright terms: Public domain W3C validator