ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjeq2 GIF version

Theorem disjeq2 4014
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))

Proof of Theorem disjeq2
StepHypRef Expression
1 eqimss2 3238 . . . 4 (𝐵 = 𝐶𝐶𝐵)
21ralimi 2560 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐶𝐵)
3 disjss2 4013 . . 3 (∀𝑥𝐴 𝐶𝐵 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
42, 3syl 14 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
5 eqimss 3237 . . . 4 (𝐵 = 𝐶𝐵𝐶)
65ralimi 2560 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 → ∀𝑥𝐴 𝐵𝐶)
7 disjss2 4013 . . 3 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
86, 7syl 14 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
94, 8impbid 129 1 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wral 2475  wss 3157  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-rmo 2483  df-in 3163  df-ss 3170  df-disj 4011
This theorem is referenced by:  disjeq2dv  4015
  Copyright terms: Public domain W3C validator