| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjeq2 | GIF version | ||
| Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3279 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐶 ⊆ 𝐵) | |
| 2 | 1 | ralimi 2593 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
| 3 | disjss2 4062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶)) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶)) |
| 5 | eqimss 3278 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐵 ⊆ 𝐶) | |
| 6 | 5 | ralimi 2593 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 7 | disjss2 4062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
| 9 | 4, 8 | impbid 129 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∀wral 2508 ⊆ wss 3197 Disj wdisj 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-rmo 2516 df-in 3203 df-ss 3210 df-disj 4060 |
| This theorem is referenced by: disjeq2dv 4064 |
| Copyright terms: Public domain | W3C validator |