Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjeq2 | GIF version |
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3202 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐶 ⊆ 𝐵) | |
2 | 1 | ralimi 2533 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
3 | disjss2 3969 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶)) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐴 𝐶)) |
5 | eqimss 3201 | . . . 4 ⊢ (𝐵 = 𝐶 → 𝐵 ⊆ 𝐶) | |
6 | 5 | ralimi 2533 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
7 | disjss2 3969 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) | |
8 | 6, 7 | syl 14 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
9 | 4, 8 | impbid 128 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∀wral 2448 ⊆ wss 3121 Disj wdisj 3966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-rmo 2456 df-in 3127 df-ss 3134 df-disj 3967 |
This theorem is referenced by: disjeq2dv 3971 |
Copyright terms: Public domain | W3C validator |