ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjwrdpfx Unicode version

Theorem disjwrdpfx 11232
Description: Sets of words are disjoint if each set contains exactly the extensions of distinct words of a fixed length. Remark: A word  W is called an "extension" of a word  P if  P is a prefix of  W. (Contributed by AV, 29-Jul-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
disjwrdpfx  |- Disj  y  e.  W  { x  e. Word  V  |  ( x prefix  N )  =  y }
Distinct variable groups:    y, N    x, V    x, y
Allowed substitution hints:    N( x)    V( y)    W( x, y)

Proof of Theorem disjwrdpfx
StepHypRef Expression
1 invdisjrab 4077 1  |- Disj  y  e.  W  { x  e. Word  V  |  ( x prefix  N )  =  y }
Colors of variables: wff set class
Syntax hints:    = wceq 1395   {crab 2512  Disj wdisj 4059  (class class class)co 6001  Word cword 11071   prefix cpfx 11204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-disj 4060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator