ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxsuff1eqwrdeq Unicode version

Theorem pfxsuff1eqwrdeq 11231
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
pfxsuff1eqwrdeq  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )

Proof of Theorem pfxsuff1eqwrdeq
StepHypRef Expression
1 wrdfin 11090 . . . . . . . 8  |-  ( W  e. Word  V  ->  W  e.  Fin )
2 fihashneq0 11016 . . . . . . . 8  |-  ( W  e.  Fin  ->  (
0  <  ( `  W
)  <->  W  =/=  (/) ) )
31, 2syl 14 . . . . . . 7  |-  ( W  e. Word  V  ->  (
0  <  ( `  W
)  <->  W  =/=  (/) ) )
43biimpa 296 . . . . . 6  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  W  =/=  (/) )
5 lennncl 11091 . . . . . 6  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
64, 5syldan 282 . . . . 5  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  ( `  W
)  e.  NN )
763adant2 1040 . . . 4  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( `  W
)  e.  NN )
8 fzo0end 10429 . . . 4  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  ( 0..^ ( `  W ) ) )
97, 8syl 14 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( ( `  W )  -  1 )  e.  ( 0..^ ( `  W )
) )
10 pfxsuffeqwrdeq 11230 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  (
( `  W )  - 
1 )  e.  ( 0..^ ( `  W
) ) )  -> 
( W  =  U  <-> 
( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) ) ) )
119, 10syld3an3 1316 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) ) ) )
123biimpd 144 . . . . . . . . . 10  |-  ( W  e. Word  V  ->  (
0  <  ( `  W
)  ->  W  =/=  (/) ) )
1312imdistani 445 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
14133adant2 1040 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
1514adantr 276 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
16 swrdlsw 11201 . . . . . . 7  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  W ) "> )
1715, 16syl 14 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  W ) "> )
18 breq2 4087 . . . . . . . . . 10  |-  ( ( `  W )  =  ( `  U )  ->  (
0  <  ( `  W
)  <->  0  <  ( `  U ) ) )
19183anbi3d 1352 . . . . . . . . 9  |-  ( ( `  W )  =  ( `  U )  ->  (
( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  <->  ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U
) ) ) )
20 wrdfin 11090 . . . . . . . . . . . . . 14  |-  ( U  e. Word  V  ->  U  e.  Fin )
21 fihashneq0 11016 . . . . . . . . . . . . . 14  |-  ( U  e.  Fin  ->  (
0  <  ( `  U
)  <->  U  =/=  (/) ) )
2220, 21syl 14 . . . . . . . . . . . . 13  |-  ( U  e. Word  V  ->  (
0  <  ( `  U
)  <->  U  =/=  (/) ) )
2322biimpd 144 . . . . . . . . . . . 12  |-  ( U  e. Word  V  ->  (
0  <  ( `  U
)  ->  U  =/=  (/) ) )
2423imdistani 445 . . . . . . . . . . 11  |-  ( ( U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
25243adant1 1039 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
26 swrdlsw 11201 . . . . . . . . . 10  |-  ( ( U  e. Word  V  /\  U  =/=  (/) )  ->  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
2725, 26syl 14 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U substr  <.
( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
2819, 27biimtrdi 163 . . . . . . . 8  |-  ( ( `  W )  =  ( `  U )  ->  (
( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( U substr  <.
( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> ) )
2928impcom 125 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
30 oveq1 6008 . . . . . . . . . . 11  |-  ( ( `  W )  =  ( `  U )  ->  (
( `  W )  - 
1 )  =  ( ( `  U )  -  1 ) )
31 id 19 . . . . . . . . . . 11  |-  ( ( `  W )  =  ( `  U )  ->  ( `  W )  =  ( `  U ) )
3230, 31opeq12d 3865 . . . . . . . . . 10  |-  ( ( `  W )  =  ( `  U )  ->  <. (
( `  W )  - 
1 ) ,  ( `  W ) >.  =  <. ( ( `  U )  -  1 ) ,  ( `  U ) >. )
3332oveq2d 6017 . . . . . . . . 9  |-  ( ( `  W )  =  ( `  U )  ->  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. ) )
3433eqeq1d 2238 . . . . . . . 8  |-  ( ( `  W )  =  ( `  U )  ->  (
( U substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) ">  <->  ( U substr  <. (
( `  U )  - 
1 ) ,  ( `  U ) >. )  =  <" (lastS `  U ) "> ) )
3534adantl 277 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( U substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) ">  <->  ( U substr  <. (
( `  U )  - 
1 ) ,  ( `  U ) >. )  =  <" (lastS `  U ) "> ) )
3629, 35mpbird 167 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) "> )
3717, 36eqeq12d 2244 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( W substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  <->  <" (lastS `  W ) ">  =  <" (lastS `  U ) "> ) )
38 lswex 11123 . . . . . . 7  |-  ( W  e. Word  V  ->  (lastS `  W )  e.  _V )
39383ad2ant1 1042 . . . . . 6  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  (lastS `  W
)  e.  _V )
40 lswex 11123 . . . . . . . 8  |-  ( U  e. Word  V  ->  (lastS `  U )  e.  _V )
41403ad2ant2 1043 . . . . . . 7  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  (lastS `  U
)  e.  _V )
4241adantr 276 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (lastS `  U )  e.  _V )
43 s111 11164 . . . . . 6  |-  ( ( (lastS `  W )  e.  _V  /\  (lastS `  U )  e.  _V )  ->  ( <" (lastS `  W ) ">  =  <" (lastS `  U ) ">  <->  (lastS `  W )  =  (lastS `  U ) ) )
4439, 42, 43syl2an2r 597 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( <" (lastS `  W
) ">  =  <" (lastS `  U
) ">  <->  (lastS `  W
)  =  (lastS `  U ) ) )
4537, 44bitrd 188 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( W substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  <->  (lastS `  W
)  =  (lastS `  U ) ) )
4645anbi2d 464 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( ( W prefix  (
( `  W )  - 
1 ) )  =  ( U prefix  ( ( `  W )  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) )  <->  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) )
4746pm5.32da 452 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( (
( `  W )  =  ( `  U )  /\  ( ( W prefix  (
( `  W )  - 
1 ) )  =  ( U prefix  ( ( `  W )  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) )  <-> 
( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )
4811, 47bitrd 188 1  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799   (/)c0 3491   <.cop 3669   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   Fincfn 6887   0cc0 7999   1c1 8000    < clt 8181    - cmin 8317   NNcn 9110  ..^cfzo 10338  ♯chash 10997  Word cword 11071  lastSclsw 11116   <"cs1 11148   substr csubstr 11177   prefix cpfx 11204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-lsw 11117  df-s1 11149  df-substr 11178  df-pfx 11205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator