ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxsuff1eqwrdeq Unicode version

Theorem pfxsuff1eqwrdeq 11153
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
pfxsuff1eqwrdeq  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )

Proof of Theorem pfxsuff1eqwrdeq
StepHypRef Expression
1 wrdfin 11015 . . . . . . . 8  |-  ( W  e. Word  V  ->  W  e.  Fin )
2 fihashneq0 10941 . . . . . . . 8  |-  ( W  e.  Fin  ->  (
0  <  ( `  W
)  <->  W  =/=  (/) ) )
31, 2syl 14 . . . . . . 7  |-  ( W  e. Word  V  ->  (
0  <  ( `  W
)  <->  W  =/=  (/) ) )
43biimpa 296 . . . . . 6  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  W  =/=  (/) )
5 lennncl 11016 . . . . . 6  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
64, 5syldan 282 . . . . 5  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  ( `  W
)  e.  NN )
763adant2 1019 . . . 4  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( `  W
)  e.  NN )
8 fzo0end 10354 . . . 4  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  ( 0..^ ( `  W ) ) )
97, 8syl 14 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( ( `  W )  -  1 )  e.  ( 0..^ ( `  W )
) )
10 pfxsuffeqwrdeq 11152 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  (
( `  W )  - 
1 )  e.  ( 0..^ ( `  W
) ) )  -> 
( W  =  U  <-> 
( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) ) ) )
119, 10syld3an3 1295 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) ) ) )
123biimpd 144 . . . . . . . . . 10  |-  ( W  e. Word  V  ->  (
0  <  ( `  W
)  ->  W  =/=  (/) ) )
1312imdistani 445 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
14133adant2 1019 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
1514adantr 276 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
16 swrdlsw 11125 . . . . . . 7  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  W ) "> )
1715, 16syl 14 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  W ) "> )
18 breq2 4049 . . . . . . . . . 10  |-  ( ( `  W )  =  ( `  U )  ->  (
0  <  ( `  W
)  <->  0  <  ( `  U ) ) )
19183anbi3d 1331 . . . . . . . . 9  |-  ( ( `  W )  =  ( `  U )  ->  (
( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  <->  ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U
) ) ) )
20 wrdfin 11015 . . . . . . . . . . . . . 14  |-  ( U  e. Word  V  ->  U  e.  Fin )
21 fihashneq0 10941 . . . . . . . . . . . . . 14  |-  ( U  e.  Fin  ->  (
0  <  ( `  U
)  <->  U  =/=  (/) ) )
2220, 21syl 14 . . . . . . . . . . . . 13  |-  ( U  e. Word  V  ->  (
0  <  ( `  U
)  <->  U  =/=  (/) ) )
2322biimpd 144 . . . . . . . . . . . 12  |-  ( U  e. Word  V  ->  (
0  <  ( `  U
)  ->  U  =/=  (/) ) )
2423imdistani 445 . . . . . . . . . . 11  |-  ( ( U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
25243adant1 1018 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
26 swrdlsw 11125 . . . . . . . . . 10  |-  ( ( U  e. Word  V  /\  U  =/=  (/) )  ->  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
2725, 26syl 14 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U substr  <.
( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
2819, 27biimtrdi 163 . . . . . . . 8  |-  ( ( `  W )  =  ( `  U )  ->  (
( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( U substr  <.
( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> ) )
2928impcom 125 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
30 oveq1 5953 . . . . . . . . . . 11  |-  ( ( `  W )  =  ( `  U )  ->  (
( `  W )  - 
1 )  =  ( ( `  U )  -  1 ) )
31 id 19 . . . . . . . . . . 11  |-  ( ( `  W )  =  ( `  U )  ->  ( `  W )  =  ( `  U ) )
3230, 31opeq12d 3827 . . . . . . . . . 10  |-  ( ( `  W )  =  ( `  U )  ->  <. (
( `  W )  - 
1 ) ,  ( `  W ) >.  =  <. ( ( `  U )  -  1 ) ,  ( `  U ) >. )
3332oveq2d 5962 . . . . . . . . 9  |-  ( ( `  W )  =  ( `  U )  ->  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. ) )
3433eqeq1d 2214 . . . . . . . 8  |-  ( ( `  W )  =  ( `  U )  ->  (
( U substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) ">  <->  ( U substr  <. (
( `  U )  - 
1 ) ,  ( `  U ) >. )  =  <" (lastS `  U ) "> ) )
3534adantl 277 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( U substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) ">  <->  ( U substr  <. (
( `  U )  - 
1 ) ,  ( `  U ) >. )  =  <" (lastS `  U ) "> ) )
3629, 35mpbird 167 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) "> )
3717, 36eqeq12d 2220 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( W substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  <->  <" (lastS `  W ) ">  =  <" (lastS `  U ) "> ) )
38 lswex 11047 . . . . . . 7  |-  ( W  e. Word  V  ->  (lastS `  W )  e.  _V )
39383ad2ant1 1021 . . . . . 6  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  (lastS `  W
)  e.  _V )
40 lswex 11047 . . . . . . . 8  |-  ( U  e. Word  V  ->  (lastS `  U )  e.  _V )
41403ad2ant2 1022 . . . . . . 7  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  (lastS `  U
)  e.  _V )
4241adantr 276 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (lastS `  U )  e.  _V )
43 s111 11088 . . . . . 6  |-  ( ( (lastS `  W )  e.  _V  /\  (lastS `  U )  e.  _V )  ->  ( <" (lastS `  W ) ">  =  <" (lastS `  U ) ">  <->  (lastS `  W )  =  (lastS `  U ) ) )
4439, 42, 43syl2an2r 595 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( <" (lastS `  W
) ">  =  <" (lastS `  U
) ">  <->  (lastS `  W
)  =  (lastS `  U ) ) )
4537, 44bitrd 188 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( W substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  <->  (lastS `  W
)  =  (lastS `  U ) ) )
4645anbi2d 464 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( ( W prefix  (
( `  W )  - 
1 ) )  =  ( U prefix  ( ( `  W )  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) )  <->  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) )
4746pm5.32da 452 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( (
( `  W )  =  ( `  U )  /\  ( ( W prefix  (
( `  W )  - 
1 ) )  =  ( U prefix  ( ( `  W )  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) )  <-> 
( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )
4811, 47bitrd 188 1  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   _Vcvv 2772   (/)c0 3460   <.cop 3636   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   Fincfn 6829   0cc0 7927   1c1 7928    < clt 8109    - cmin 8245   NNcn 9038  ..^cfzo 10266  ♯chash 10922  Word cword 10996  lastSclsw 11040   <"cs1 11072   substr csubstr 11101   prefix cpfx 11128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-fzo 10267  df-ihash 10923  df-word 10997  df-lsw 11041  df-s1 11073  df-substr 11102  df-pfx 11129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator