ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxsuff1eqwrdeq Unicode version

Theorem pfxsuff1eqwrdeq 11190
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
pfxsuff1eqwrdeq  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )

Proof of Theorem pfxsuff1eqwrdeq
StepHypRef Expression
1 wrdfin 11050 . . . . . . . 8  |-  ( W  e. Word  V  ->  W  e.  Fin )
2 fihashneq0 10976 . . . . . . . 8  |-  ( W  e.  Fin  ->  (
0  <  ( `  W
)  <->  W  =/=  (/) ) )
31, 2syl 14 . . . . . . 7  |-  ( W  e. Word  V  ->  (
0  <  ( `  W
)  <->  W  =/=  (/) ) )
43biimpa 296 . . . . . 6  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  W  =/=  (/) )
5 lennncl 11051 . . . . . 6  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
64, 5syldan 282 . . . . 5  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  ( `  W
)  e.  NN )
763adant2 1019 . . . 4  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( `  W
)  e.  NN )
8 fzo0end 10389 . . . 4  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  ( 0..^ ( `  W ) ) )
97, 8syl 14 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( ( `  W )  -  1 )  e.  ( 0..^ ( `  W )
) )
10 pfxsuffeqwrdeq 11189 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  (
( `  W )  - 
1 )  e.  ( 0..^ ( `  W
) ) )  -> 
( W  =  U  <-> 
( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) ) ) )
119, 10syld3an3 1295 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) ) ) )
123biimpd 144 . . . . . . . . . 10  |-  ( W  e. Word  V  ->  (
0  <  ( `  W
)  ->  W  =/=  (/) ) )
1312imdistani 445 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
14133adant2 1019 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
1514adantr 276 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
16 swrdlsw 11160 . . . . . . 7  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  W ) "> )
1715, 16syl 14 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  W ) "> )
18 breq2 4063 . . . . . . . . . 10  |-  ( ( `  W )  =  ( `  U )  ->  (
0  <  ( `  W
)  <->  0  <  ( `  U ) ) )
19183anbi3d 1331 . . . . . . . . 9  |-  ( ( `  W )  =  ( `  U )  ->  (
( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  <->  ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U
) ) ) )
20 wrdfin 11050 . . . . . . . . . . . . . 14  |-  ( U  e. Word  V  ->  U  e.  Fin )
21 fihashneq0 10976 . . . . . . . . . . . . . 14  |-  ( U  e.  Fin  ->  (
0  <  ( `  U
)  <->  U  =/=  (/) ) )
2220, 21syl 14 . . . . . . . . . . . . 13  |-  ( U  e. Word  V  ->  (
0  <  ( `  U
)  <->  U  =/=  (/) ) )
2322biimpd 144 . . . . . . . . . . . 12  |-  ( U  e. Word  V  ->  (
0  <  ( `  U
)  ->  U  =/=  (/) ) )
2423imdistani 445 . . . . . . . . . . 11  |-  ( ( U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
25243adant1 1018 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
26 swrdlsw 11160 . . . . . . . . . 10  |-  ( ( U  e. Word  V  /\  U  =/=  (/) )  ->  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
2725, 26syl 14 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  U )
)  ->  ( U substr  <.
( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
2819, 27biimtrdi 163 . . . . . . . 8  |-  ( ( `  W )  =  ( `  U )  ->  (
( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( U substr  <.
( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> ) )
2928impcom 125 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. )  =  <" (lastS `  U ) "> )
30 oveq1 5974 . . . . . . . . . . 11  |-  ( ( `  W )  =  ( `  U )  ->  (
( `  W )  - 
1 )  =  ( ( `  U )  -  1 ) )
31 id 19 . . . . . . . . . . 11  |-  ( ( `  W )  =  ( `  U )  ->  ( `  W )  =  ( `  U ) )
3230, 31opeq12d 3841 . . . . . . . . . 10  |-  ( ( `  W )  =  ( `  U )  ->  <. (
( `  W )  - 
1 ) ,  ( `  W ) >.  =  <. ( ( `  U )  -  1 ) ,  ( `  U ) >. )
3332oveq2d 5983 . . . . . . . . 9  |-  ( ( `  W )  =  ( `  U )  ->  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  U
)  -  1 ) ,  ( `  U
) >. ) )
3433eqeq1d 2216 . . . . . . . 8  |-  ( ( `  W )  =  ( `  U )  ->  (
( U substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) ">  <->  ( U substr  <. (
( `  U )  - 
1 ) ,  ( `  U ) >. )  =  <" (lastS `  U ) "> ) )
3534adantl 277 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( U substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) ">  <->  ( U substr  <. (
( `  U )  - 
1 ) ,  ( `  U ) >. )  =  <" (lastS `  U ) "> ) )
3629, 35mpbird 167 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  <" (lastS `  U ) "> )
3717, 36eqeq12d 2222 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( W substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  <->  <" (lastS `  W ) ">  =  <" (lastS `  U ) "> ) )
38 lswex 11082 . . . . . . 7  |-  ( W  e. Word  V  ->  (lastS `  W )  e.  _V )
39383ad2ant1 1021 . . . . . 6  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  (lastS `  W
)  e.  _V )
40 lswex 11082 . . . . . . . 8  |-  ( U  e. Word  V  ->  (lastS `  U )  e.  _V )
41403ad2ant2 1022 . . . . . . 7  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  (lastS `  U
)  e.  _V )
4241adantr 276 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (lastS `  U )  e.  _V )
43 s111 11123 . . . . . 6  |-  ( ( (lastS `  W )  e.  _V  /\  (lastS `  U )  e.  _V )  ->  ( <" (lastS `  W ) ">  =  <" (lastS `  U ) ">  <->  (lastS `  W )  =  (lastS `  U ) ) )
4439, 42, 43syl2an2r 595 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  ( <" (lastS `  W
) ">  =  <" (lastS `  U
) ">  <->  (lastS `  W
)  =  (lastS `  U ) ) )
4537, 44bitrd 188 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( W substr  <. ( ( `  W )  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  <->  (lastS `  W
)  =  (lastS `  U ) ) )
4645anbi2d 464 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  /\  ( `  W
)  =  ( `  U
) )  ->  (
( ( W prefix  (
( `  W )  - 
1 ) )  =  ( U prefix  ( ( `  W )  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) )  <->  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) )
4746pm5.32da 452 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( (
( `  W )  =  ( `  U )  /\  ( ( W prefix  (
( `  W )  - 
1 ) )  =  ( U prefix  ( ( `  W )  -  1 ) )  /\  ( W substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. )  =  ( U substr  <. ( ( `  W
)  -  1 ) ,  ( `  W
) >. ) ) )  <-> 
( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )
4811, 47bitrd 188 1  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( `  W )
)  ->  ( W  =  U  <->  ( ( `  W
)  =  ( `  U
)  /\  ( ( W prefix  ( ( `  W
)  -  1 ) )  =  ( U prefix 
( ( `  W
)  -  1 ) )  /\  (lastS `  W )  =  (lastS `  U ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   _Vcvv 2776   (/)c0 3468   <.cop 3646   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   Fincfn 6850   0cc0 7960   1c1 7961    < clt 8142    - cmin 8278   NNcn 9071  ..^cfzo 10299  ♯chash 10957  Word cword 11031  lastSclsw 11075   <"cs1 11107   substr csubstr 11136   prefix cpfx 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-lsw 11076  df-s1 11108  df-substr 11137  df-pfx 11164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator