ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdisjrab Unicode version

Theorem invdisjrab 4077
Description: The restricted class abstractions  { x  e.  B  |  C  =  y } for distinct  y  e.  A are disjoint. (Contributed by AV, 6-May-2020.) (Proof shortened by GG, 26-Jan-2024.)
Assertion
Ref Expression
invdisjrab  |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
Distinct variable groups:    x, B    y, C    x, y
Allowed substitution hints:    A( x, y)    B( y)    C( x)

Proof of Theorem invdisjrab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2372 . . . . 5  |-  F/_ x
z
2 nfcv 2372 . . . . 5  |-  F/_ x B
3 nfcsb1v 3157 . . . . . 6  |-  F/_ x [_ z  /  x ]_ C
43nfeq1 2382 . . . . 5  |-  F/ x [_ z  /  x ]_ C  =  y
5 csbeq1a 3133 . . . . . 6  |-  ( x  =  z  ->  C  =  [_ z  /  x ]_ C )
65eqeq1d 2238 . . . . 5  |-  ( x  =  z  ->  ( C  =  y  <->  [_ z  /  x ]_ C  =  y ) )
71, 2, 4, 6elrabf 2957 . . . 4  |-  ( z  e.  { x  e.  B  |  C  =  y }  <->  ( z  e.  B  /\  [_ z  /  x ]_ C  =  y ) )
8 simprr 531 . . . 4  |-  ( ( y  e.  A  /\  ( z  e.  B  /\  [_ z  /  x ]_ C  =  y
) )  ->  [_ z  /  x ]_ C  =  y )
97, 8sylan2b 287 . . 3  |-  ( ( y  e.  A  /\  z  e.  { x  e.  B  |  C  =  y } )  ->  [_ z  /  x ]_ C  =  y
)
109rgen2 2616 . 2  |-  A. y  e.  A  A. z  e.  { x  e.  B  |  C  =  y } [_ z  /  x ]_ C  =  y
11 invdisj 4076 . 2  |-  ( A. y  e.  A  A. z  e.  { x  e.  B  |  C  =  y } [_ z  /  x ]_ C  =  y  -> Disj  y  e.  A  { x  e.  B  |  C  =  y } )
1210, 11ax-mp 5 1  |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   [_csb 3124  Disj wdisj 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-disj 4060
This theorem is referenced by:  disjwrdpfx  11232
  Copyright terms: Public domain W3C validator