ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdisjrab Unicode version

Theorem invdisjrab 4039
Description: The restricted class abstractions  { x  e.  B  |  C  =  y } for distinct  y  e.  A are disjoint. (Contributed by AV, 6-May-2020.) (Proof shortened by GG, 26-Jan-2024.)
Assertion
Ref Expression
invdisjrab  |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
Distinct variable groups:    x, B    y, C    x, y
Allowed substitution hints:    A( x, y)    B( y)    C( x)

Proof of Theorem invdisjrab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2348 . . . . 5  |-  F/_ x
z
2 nfcv 2348 . . . . 5  |-  F/_ x B
3 nfcsb1v 3126 . . . . . 6  |-  F/_ x [_ z  /  x ]_ C
43nfeq1 2358 . . . . 5  |-  F/ x [_ z  /  x ]_ C  =  y
5 csbeq1a 3102 . . . . . 6  |-  ( x  =  z  ->  C  =  [_ z  /  x ]_ C )
65eqeq1d 2214 . . . . 5  |-  ( x  =  z  ->  ( C  =  y  <->  [_ z  /  x ]_ C  =  y ) )
71, 2, 4, 6elrabf 2927 . . . 4  |-  ( z  e.  { x  e.  B  |  C  =  y }  <->  ( z  e.  B  /\  [_ z  /  x ]_ C  =  y ) )
8 simprr 531 . . . 4  |-  ( ( y  e.  A  /\  ( z  e.  B  /\  [_ z  /  x ]_ C  =  y
) )  ->  [_ z  /  x ]_ C  =  y )
97, 8sylan2b 287 . . 3  |-  ( ( y  e.  A  /\  z  e.  { x  e.  B  |  C  =  y } )  ->  [_ z  /  x ]_ C  =  y
)
109rgen2 2592 . 2  |-  A. y  e.  A  A. z  e.  { x  e.  B  |  C  =  y } [_ z  /  x ]_ C  =  y
11 invdisj 4038 . 2  |-  ( A. y  e.  A  A. z  e.  { x  e.  B  |  C  =  y } [_ z  /  x ]_ C  =  y  -> Disj  y  e.  A  { x  e.  B  |  C  =  y } )
1210, 11ax-mp 5 1  |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488   [_csb 3093  Disj wdisj 4021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-disj 4022
This theorem is referenced by:  disjwrdpfx  11154
  Copyright terms: Public domain W3C validator