ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdisjrab Unicode version

Theorem invdisjrab 4053
Description: The restricted class abstractions  { x  e.  B  |  C  =  y } for distinct  y  e.  A are disjoint. (Contributed by AV, 6-May-2020.) (Proof shortened by GG, 26-Jan-2024.)
Assertion
Ref Expression
invdisjrab  |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
Distinct variable groups:    x, B    y, C    x, y
Allowed substitution hints:    A( x, y)    B( y)    C( x)

Proof of Theorem invdisjrab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfcv 2350 . . . . 5  |-  F/_ x
z
2 nfcv 2350 . . . . 5  |-  F/_ x B
3 nfcsb1v 3134 . . . . . 6  |-  F/_ x [_ z  /  x ]_ C
43nfeq1 2360 . . . . 5  |-  F/ x [_ z  /  x ]_ C  =  y
5 csbeq1a 3110 . . . . . 6  |-  ( x  =  z  ->  C  =  [_ z  /  x ]_ C )
65eqeq1d 2216 . . . . 5  |-  ( x  =  z  ->  ( C  =  y  <->  [_ z  /  x ]_ C  =  y ) )
71, 2, 4, 6elrabf 2934 . . . 4  |-  ( z  e.  { x  e.  B  |  C  =  y }  <->  ( z  e.  B  /\  [_ z  /  x ]_ C  =  y ) )
8 simprr 531 . . . 4  |-  ( ( y  e.  A  /\  ( z  e.  B  /\  [_ z  /  x ]_ C  =  y
) )  ->  [_ z  /  x ]_ C  =  y )
97, 8sylan2b 287 . . 3  |-  ( ( y  e.  A  /\  z  e.  { x  e.  B  |  C  =  y } )  ->  [_ z  /  x ]_ C  =  y
)
109rgen2 2594 . 2  |-  A. y  e.  A  A. z  e.  { x  e.  B  |  C  =  y } [_ z  /  x ]_ C  =  y
11 invdisj 4052 . 2  |-  ( A. y  e.  A  A. z  e.  { x  e.  B  |  C  =  y } [_ z  /  x ]_ C  =  y  -> Disj  y  e.  A  { x  e.  B  |  C  =  y } )
1210, 11ax-mp 5 1  |- Disj  y  e.  A  { x  e.  B  |  C  =  y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   [_csb 3101  Disj wdisj 4035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-disj 4036
This theorem is referenced by:  disjwrdpfx  11191
  Copyright terms: Public domain W3C validator