HomeHome Intuitionistic Logic Explorer
Theorem List (p. 113 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11201-11300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-shft 11201* Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of  CC) and produces a new function on  CC. See shftval 11211 for its value. (Contributed by NM, 20-Jul-2005.)
 |- 
 shift  =  ( f  e.  _V ,  x  e. 
 CC  |->  { <. y ,  z >.  |  ( y  e. 
 CC  /\  ( y  -  x ) f z ) } )
 
Theoremshftlem 11202* Two ways to write a shifted set  ( B  +  A
). (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  CC  /\  B  C_  CC )  ->  { x  e. 
 CC  |  ( x  -  A )  e.  B }  =  { x  |  E. y  e.  B  x  =  ( y  +  A ) } )
 
Theoremshftuz 11203* A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  { x  e. 
 CC  |  ( x  -  A )  e.  ( ZZ>= `  B ) }  =  ( ZZ>= `  ( B  +  A ) ) )
 
Theoremshftfvalg 11204* The value of the sequence shifter operation is a function on  CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
 )
 
Theoremovshftex 11205 Existence of the result of applying shift. (Contributed by Jim Kingdon, 15-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC )  ->  ( F  shift  A )  e.  _V )
 
Theoremshftfibg 11206 Value of a fiber of the relation  F. (Contributed by Jim Kingdon, 15-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) " { B } )  =  ( F " { ( B  -  A ) }
 ) )
 
Theoremshftfval 11207* The value of the sequence shifter operation is a function on  CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
 )
 
Theoremshftdm 11208* Domain of a relation shifted by  A. The set on the right is more commonly notated as  ( dom  F  +  A ) (meaning add  A to every element of  dom  F). (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  dom  F }
 )
 
Theoremshftfib 11209 Value of a fiber of the relation  F. (Contributed by Mario Carneiro, 4-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A )
 " { B }
 )  =  ( F
 " { ( B  -  A ) }
 ) )
 
Theoremshftfn 11210* Functionality and domain of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn 
 { x  e.  CC  |  ( x  -  A )  e.  B }
 )
 
Theoremshftval 11211 Value of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) `
  B )  =  ( F `  ( B  -  A ) ) )
 
Theoremshftval2 11212 Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( F  shift  ( A  -  B ) ) `  ( A  +  C ) )  =  ( F `  ( B  +  C ) ) )
 
Theoremshftval3 11213 Value of a sequence shifted by  A  -  B. (Contributed by NM, 20-Jul-2005.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  ( A  -  B ) ) `
  A )  =  ( F `  B ) )
 
Theoremshftval4 11214 Value of a sequence shifted by  -u A. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B )
 ) )
 
Theoremshftval5 11215 Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) `
  ( B  +  A ) )  =  ( F `  B ) )
 
Theoremshftf 11216* Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( F : B --> C  /\  A  e.  CC )  ->  ( F  shift  A ) : { x  e. 
 CC  |  ( x  -  A )  e.  B } --> C )
 
Theorem2shfti 11217 Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( F  shift  A ) 
 shift  B )  =  ( F  shift  ( A  +  B ) ) )
 
Theoremshftidt2 11218 Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( F  shift  0 )  =  ( F  |`  CC )
 
Theoremshftidt 11219 Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( A  e.  CC  ->  ( ( F 
 shift  0 ) `  A )  =  ( F `  A ) )
 
Theoremshftcan1 11220 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( ( F  shift  A )  shift  -u A ) `  B )  =  ( F `  B ) )
 
Theoremshftcan2 11221 Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
 |-  F  e.  _V   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
 ( ( F  shift  -u A )  shift  A ) `
  B )  =  ( F `  B ) )
 
Theoremshftvalg 11222 Value of a sequence shifted by  A. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  A ) `  B )  =  ( F `  ( B  -  A ) ) )
 
Theoremshftval4g 11223 Value of a sequence shifted by  -u A. (Contributed by Jim Kingdon, 19-Aug-2021.)
 |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B ) ) )
 
Theoremseq3shft 11224* Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Jim Kingdon, 17-Oct-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  ( M  -  N ) ) ) 
 ->  ( F `  x )  e.  S )   &    |-  (
 ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  seq
 M (  .+  ,  ( F  shift  N ) )  =  (  seq ( M  -  N ) (  .+  ,  F )  shift  N ) )
 
4.8.2  Real and imaginary parts; conjugate
 
Syntaxccj 11225 Extend class notation to include complex conjugate function.
 class  *
 
Syntaxcre 11226 Extend class notation to include real part of a complex number.
 class  Re
 
Syntaxcim 11227 Extend class notation to include imaginary part of a complex number.
 class  Im
 
Definitiondf-cj 11228* Define the complex conjugate function. See cjcli 11299 for its closure and cjval 11231 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  *  =  ( x  e.  CC  |->  ( iota_ y  e.  CC  ( ( x  +  y )  e.  RR  /\  ( _i  x.  ( x  -  y ) )  e. 
 RR ) ) )
 
Definitiondf-re 11229 Define a function whose value is the real part of a complex number. See reval 11235 for its value, recli 11297 for its closure, and replim 11245 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
 |-  Re  =  ( x  e.  CC  |->  ( ( x  +  ( * `
  x ) ) 
 /  2 ) )
 
Definitiondf-im 11230 Define a function whose value is the imaginary part of a complex number. See imval 11236 for its value, imcli 11298 for its closure, and replim 11245 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.)
 |-  Im  =  ( x  e.  CC  |->  ( Re
 `  ( x  /  _i ) ) )
 
Theoremcjval 11231* The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  =  ( iota_ x  e. 
 CC  ( ( A  +  x )  e. 
 RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
 
Theoremcjth 11232 The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( ( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )
 
Theoremcjf 11233 Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  * : CC --> CC
 
Theoremcjcl 11234 The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  e.  CC )
 
Theoremreval 11235 The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Re `  A )  =  ( ( A  +  ( * `  A ) )  / 
 2 ) )
 
Theoremimval 11236 The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( Re `  ( A  /  _i ) ) )
 
Theoremimre 11237 The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( Re `  ( -u _i  x.  A ) ) )
 
Theoremreim 11238 The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.)
 |-  ( A  e.  CC  ->  ( Re `  A )  =  ( Im `  ( _i  x.  A ) ) )
 
Theoremrecl 11239 The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Re `  A )  e.  RR )
 
Theoremimcl 11240 The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  ( Im `  A )  e.  RR )
 
Theoremref 11241 Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  Re : CC --> RR
 
Theoremimf 11242 Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
 |-  Im : CC --> RR
 
Theoremcrre 11243 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
 
Theoremcrim 11244 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
 
Theoremreplim 11245 Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremremim 11246 Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  ( * `  A )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremreim0 11247 The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  RR  ->  ( Im `  A )  =  0 )
 
Theoremreim0b 11248 A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
 
Theoremrereb 11249 A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Re `  A )  =  A ) )
 
Theoremmulreap 11250 A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( A  e.  RR  <->  ( B  x.  A )  e. 
 RR ) )
 
Theoremrere 11251 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( A  e.  RR  ->  ( Re `  A )  =  A )
 
Theoremcjreb 11252 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( * `  A )  =  A ) )
 
Theoremrecj 11253 Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Re `  ( * `  A ) )  =  ( Re `  A ) )
 
Theoremreneg 11254 Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Re `  -u A )  =  -u ( Re
 `  A ) )
 
Theoremreadd 11255 Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  +  B ) )  =  (
 ( Re `  A )  +  ( Re `  B ) ) )
 
Theoremresub 11256 Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  -  B ) )  =  (
 ( Re `  A )  -  ( Re `  B ) ) )
 
Theoremremullem 11257 Lemma for remul 11258, immul 11265, and cjmul 11271. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re
 `  ( A  x.  B ) )  =  ( ( ( Re
 `  A )  x.  ( Re `  B ) )  -  (
 ( Im `  A )  x.  ( Im `  B ) ) ) 
 /\  ( Im `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im
 `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) ) ) )
 
Theoremremul 11258 Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im
 `  A )  x.  ( Im `  B ) ) ) )
 
Theoremremul2 11259 Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B ) )  =  ( A  x.  ( Re `  B ) ) )
 
Theoremredivap 11260 Real part of a division. Related to remul2 11259. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( Re `  ( A 
 /  B ) )  =  ( ( Re
 `  A )  /  B ) )
 
Theoremimcj 11261 Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Im `  ( * `  A ) )  =  -u ( Im `  A ) )
 
Theoremimneg 11262 The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( Im `  -u A )  =  -u ( Im
 `  A ) )
 
Theoremimadd 11263 Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B ) )  =  (
 ( Im `  A )  +  ( Im `  B ) ) )
 
Theoremimsub 11264 Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  -  B ) )  =  (
 ( Im `  A )  -  ( Im `  B ) ) )
 
Theoremimmul 11265 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B ) )  =  (
 ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im
 `  A )  x.  ( Re `  B ) ) ) )
 
Theoremimmul2 11266 Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B ) )  =  ( A  x.  ( Im `  B ) ) )
 
Theoremimdivap 11267 Imaginary part of a division. Related to immul2 11266. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  RR  /\  B #  0 )  ->  ( Im `  ( A 
 /  B ) )  =  ( ( Im
 `  A )  /  B ) )
 
Theoremcjre 11268 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.)
 |-  ( A  e.  RR  ->  ( * `  A )  =  A )
 
Theoremcjcj 11269 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( * `  ( * `  A ) )  =  A )
 
Theoremcjadd 11270 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  +  B ) )  =  (
 ( * `  A )  +  ( * `  B ) ) )
 
Theoremcjmul 11271 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B ) )  =  (
 ( * `  A )  x.  ( * `  B ) ) )
 
Theoremipcnval 11272 Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremcjmulrcl 11273 A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  e.  RR )
 
Theoremcjmulval 11274 A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  x.  ( * `  A ) )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2
 ) ) )
 
Theoremcjmulge0 11275 A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  0  <_  ( A  x.  ( * `  A ) ) )
 
Theoremcjneg 11276 Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( * `  -u A )  =  -u ( * `
  A ) )
 
Theoremaddcj 11277 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
 |-  ( A  e.  CC  ->  ( A  +  ( * `  A ) )  =  ( 2  x.  ( Re `  A ) ) )
 
Theoremcjsub 11278 Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  -  B ) )  =  (
 ( * `  A )  -  ( * `  B ) ) )
 
Theoremcjexp 11279 Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( * `  ( A ^ N ) )  =  ( ( * `  A ) ^ N ) )
 
Theoremimval2 11280 The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  CC  ->  ( Im `  A )  =  ( ( A  -  ( * `  A ) )  /  ( 2  x.  _i ) ) )
 
Theoremre0 11281 The real part of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( Re `  0
 )  =  0
 
Theoremim0 11282 The imaginary part of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( Im `  0
 )  =  0
 
Theoremre1 11283 The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Re `  1
 )  =  1
 
Theoremim1 11284 The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Im `  1
 )  =  0
 
Theoremrei 11285 The real part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Re `  _i )  =  0
 
Theoremimi 11286 The imaginary part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Im `  _i )  =  1
 
Theoremcj0 11287 The conjugate of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( * `  0
 )  =  0
 
Theoremcji 11288 The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
 |-  ( * `  _i )  =  -u _i
 
Theoremcjreim 11289 The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( A  -  ( _i  x.  B ) ) )
 
Theoremcjreim2 11290 The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  -  ( _i  x.  B ) ) )  =  ( A  +  ( _i  x.  B ) ) )
 
Theoremcj11 11291 Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `
  A )  =  ( * `  B ) 
 <->  A  =  B ) )
 
Theoremcjap 11292 Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `
  A ) #  ( * `  B )  <->  A #  B ) )
 
Theoremcjap0 11293 A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  ( * `  A ) #  0 )
 )
 
Theoremcjne0 11294 A number is nonzero iff its complex conjugate is nonzero. Also see cjap0 11293 which is similar but for apartness. (Contributed by NM, 29-Apr-2005.)
 |-  ( A  e.  CC  ->  ( A  =/=  0  <->  ( * `  A )  =/=  0 ) )
 
Theoremcjdivap 11295 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( * `  ( A 
 /  B ) )  =  ( ( * `
  A )  /  ( * `  B ) ) )
 
Theoremcnrecnv 11296* The inverse to the canonical bijection from  ( RR  X.  RR ) to  CC from cnref1o 9792. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  ( _i  x.  y
 ) ) )   =>    |-  `' F  =  ( z  e.  CC  |->  <.
 ( Re `  z
 ) ,  ( Im
 `  z ) >. )
 
Theoremrecli 11297 The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  A )  e.  RR
 
Theoremimcli 11298 The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( Im `  A )  e.  RR
 
Theoremcjcli 11299 Closure law for complex conjugate. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( * `  A )  e.  CC
 
Theoremreplimi 11300 Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   =>    |-  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >