Theorem List for Intuitionistic Logic Explorer - 11201-11300 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | rpmincl 11201 |
The minumum of two positive real numbers is a positive real number.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
inf |
|
Theorem | bdtrilem 11202 |
Lemma for bdtri 11203. (Contributed by Steven Nguyen and Jim
Kingdon,
17-May-2023.)
|
|
|
Theorem | bdtri 11203 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
inf
inf inf |
|
Theorem | mul0inf 11204 |
Equality of a product with zero. A bit of a curiosity, in the sense that
theorems like abs00ap 11026 and mulap0bd 8575 may better express the ideas behind
it. (Contributed by Jim Kingdon, 31-Jul-2023.)
|
inf |
|
Theorem | mingeb 11205 |
Equivalence of
and being equal to the minimum of two reals.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
inf
|
|
Theorem | 2zinfmin 11206 |
Two ways to express the minimum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
inf
|
|
4.7.7 The maximum of two extended
reals
|
|
Theorem | xrmaxleim 11207 |
Value of maximum when we know which extended real is larger.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
|
|
Theorem | xrmaxiflemcl 11208 |
Lemma for xrmaxif 11214. Closure. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
|
|
Theorem | xrmaxifle 11209 |
An upper bound for in the extended reals. (Contributed by
Jim Kingdon, 26-Apr-2023.)
|
|
|
Theorem | xrmaxiflemab 11210 |
Lemma for xrmaxif 11214. A variation of xrmaxleim 11207- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
|
|
Theorem | xrmaxiflemlub 11211 |
Lemma for xrmaxif 11214. A least upper bound for .
(Contributed by Jim Kingdon, 28-Apr-2023.)
|
|
|
Theorem | xrmaxiflemcom 11212 |
Lemma for xrmaxif 11214. Commutativity of an expression which we
will
later show to be the supremum. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
|
|
Theorem | xrmaxiflemval 11213* |
Lemma for xrmaxif 11214. Value of the supremum. (Contributed by
Jim
Kingdon, 29-Apr-2023.)
|
|
|
Theorem | xrmaxif 11214 |
Maximum of two extended reals in terms of expressions.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
|
|
Theorem | xrmaxcl 11215 |
The maximum of two extended reals is an extended real. (Contributed by
Jim Kingdon, 29-Apr-2023.)
|
|
|
Theorem | xrmax1sup 11216 |
An extended real is less than or equal to the maximum of it and another.
(Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
30-Apr-2023.)
|
|
|
Theorem | xrmax2sup 11217 |
An extended real is less than or equal to the maximum of it and another.
(Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
30-Apr-2023.)
|
|
|
Theorem | xrmaxrecl 11218 |
The maximum of two real numbers is the same when taken as extended reals
or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
|
|
|
Theorem | xrmaxleastlt 11219 |
The maximum as a least upper bound, in terms of less than. (Contributed
by Jim Kingdon, 9-Feb-2022.)
|
|
|
Theorem | xrltmaxsup 11220 |
The maximum as a least upper bound. (Contributed by Jim Kingdon,
10-May-2023.)
|
|
|
Theorem | xrmaxltsup 11221 |
Two ways of saying the maximum of two numbers is less than a third.
(Contributed by Jim Kingdon, 30-Apr-2023.)
|
|
|
Theorem | xrmaxlesup 11222 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim
Kingdon, 10-May-2023.)
|
|
|
Theorem | xrmaxaddlem 11223 |
Lemma for xrmaxadd 11224. The case where is real. (Contributed by
Jim Kingdon, 11-May-2023.)
|
|
|
Theorem | xrmaxadd 11224 |
Distributing addition over maximum. (Contributed by Jim Kingdon,
11-May-2023.)
|
|
|
4.7.8 The minimum of two extended
reals
|
|
Theorem | xrnegiso 11225 |
Negation is an order anti-isomorphism of the extended reals, which is
its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
|
|
|
Theorem | infxrnegsupex 11226* |
The infimum of a set of extended reals is the negative of the
supremum of the negatives of its elements. (Contributed by Jim Kingdon,
2-May-2023.)
|
inf
|
|
Theorem | xrnegcon1d 11227 |
Contraposition law for extended real unary minus. (Contributed by Jim
Kingdon, 2-May-2023.)
|
|
|
Theorem | xrminmax 11228 |
Minimum expressed in terms of maximum. (Contributed by Jim Kingdon,
2-May-2023.)
|
inf
|
|
Theorem | xrmincl 11229 |
The minumum of two extended reals is an extended real. (Contributed by
Jim Kingdon, 3-May-2023.)
|
inf |
|
Theorem | xrmin1inf 11230 |
The minimum of two extended reals is less than or equal to the first.
(Contributed by Jim Kingdon, 3-May-2023.)
|
inf |
|
Theorem | xrmin2inf 11231 |
The minimum of two extended reals is less than or equal to the second.
(Contributed by Jim Kingdon, 3-May-2023.)
|
inf |
|
Theorem | xrmineqinf 11232 |
The minimum of two extended reals is equal to the second if the first is
bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim
Kingdon, 3-May-2023.)
|
inf
|
|
Theorem | xrltmininf 11233 |
Two ways of saying an extended real is less than the minimum of two
others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon,
3-May-2023.)
|
inf |
|
Theorem | xrlemininf 11234 |
Two ways of saying a number is less than or equal to the minimum of two
others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim
Kingdon, 4-May-2023.)
|
inf |
|
Theorem | xrminltinf 11235 |
Two ways of saying an extended real is greater than the minimum of two
others. (Contributed by Jim Kingdon, 19-May-2023.)
|
inf
|
|
Theorem | xrminrecl 11236 |
The minimum of two real numbers is the same when taken as extended reals
or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
|
inf inf |
|
Theorem | xrminrpcl 11237 |
The minimum of two positive reals is a positive real. (Contributed by Jim
Kingdon, 4-May-2023.)
|
inf |
|
Theorem | xrminadd 11238 |
Distributing addition over minimum. (Contributed by Jim Kingdon,
10-May-2023.)
|
inf inf |
|
Theorem | xrbdtri 11239 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
inf
inf inf
|
|
Theorem | iooinsup 11240 |
Intersection of two open intervals of extended reals. (Contributed by
NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
|
inf |
|
4.8 Elementary limits and
convergence
|
|
4.8.1 Limits
|
|
Syntax | cli 11241 |
Extend class notation with convergence relation for limits.
|
|
|
Definition | df-clim 11242* |
Define the limit relation for complex number sequences. See clim 11244
for
its relational expression. (Contributed by NM, 28-Aug-2005.)
|
|
|
Theorem | climrel 11243 |
The limit relation is a relation. (Contributed by NM, 28-Aug-2005.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | clim 11244* |
Express the predicate: The limit of complex number sequence is
, or converges to . This means that for any
real
, no matter how
small, there always exists an integer such
that the absolute difference of any later complex number in the sequence
and the limit is less than . (Contributed by NM, 28-Aug-2005.)
(Revised by Mario Carneiro, 28-Apr-2015.)
|
|
|
Theorem | climcl 11245 |
Closure of the limit of a sequence of complex numbers. (Contributed by
NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
|
|
|
Theorem | clim2 11246* |
Express the predicate: The limit of complex number sequence is
, or converges to , with more general
quantifier
restrictions than clim 11244. (Contributed by NM, 6-Jan-2007.) (Revised
by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | clim2c 11247* |
Express the predicate
converges to .
(Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | clim0 11248* |
Express the predicate
converges to .
(Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | clim0c 11249* |
Express the predicate
converges to .
(Contributed by NM,
24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climi 11250* |
Convergence of a sequence of complex numbers. (Contributed by NM,
11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climi2 11251* |
Convergence of a sequence of complex numbers. (Contributed by NM,
11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climi0 11252* |
Convergence of a sequence of complex numbers to zero. (Contributed by
NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climconst 11253* |
An (eventually) constant sequence converges to its value. (Contributed
by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climconst2 11254 |
A constant sequence converges to its value. (Contributed by NM,
6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climz 11255 |
The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climuni 11256 |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro,
31-Jan-2014.)
|
|
|
Theorem | fclim 11257 |
The limit relation is function-like, and with range the complex numbers.
(Contributed by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climdm 11258 |
Two ways to express that a function has a limit. (The expression
is sometimes useful as a shorthand for "the unique limit
of the function "). (Contributed by Mario Carneiro,
18-Mar-2014.)
|
|
|
Theorem | climeu 11259* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 25-Dec-2005.)
|
|
|
Theorem | climreu 11260* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by NM, 25-Dec-2005.)
|
|
|
Theorem | climmo 11261* |
An infinite sequence of complex numbers converges to at most one limit.
(Contributed by Mario Carneiro, 13-Jul-2013.)
|
|
|
Theorem | climeq 11262* |
Two functions that are eventually equal to one another have the same
limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario
Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climmpt 11263* |
Exhibit a function
with the same convergence properties as the
not-quite-function . (Contributed by Mario Carneiro,
31-Jan-2014.)
|
|
|
Theorem | 2clim 11264* |
If two sequences converge to each other, they converge to the same
limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario
Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climshftlemg 11265 |
A shifted function converges if the original function converges.
(Contributed by Mario Carneiro, 5-Nov-2013.)
|
|
|
Theorem | climres 11266 |
A function restricted to upper integers converges iff the original
function converges. (Contributed by Mario Carneiro, 13-Jul-2013.)
(Revised by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climshft 11267 |
A shifted function converges iff the original function converges.
(Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro,
31-Jan-2014.)
|
|
|
Theorem | serclim0 11268 |
The zero series converges to zero. (Contributed by Paul Chapman,
9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climshft2 11269* |
A shifted function converges iff the original function converges.
(Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario
Carneiro, 6-Feb-2014.)
|
|
|
Theorem | climabs0 11270* |
Convergence to zero of the absolute value is equivalent to convergence
to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro,
31-Jan-2014.)
|
|
|
Theorem | climcn1 11271* |
Image of a limit under a continuous map. (Contributed by Mario
Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climcn2 11272* |
Image of a limit under a continuous map, two-arg version. (Contributed
by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | addcn2 11273* |
Complex number addition is a continuous function. Part of Proposition
14-4.16 of [Gleason] p. 243. (We write
out the definition directly
because df-cn and df-cncf are not yet available to us. See addcncntop 13346
for the abbreviated version.) (Contributed by Mario Carneiro,
31-Jan-2014.)
|
|
|
Theorem | subcn2 11274* |
Complex number subtraction is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
Carneiro, 31-Jan-2014.)
|
|
|
Theorem | mulcn2 11275* |
Complex number multiplication is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
Carneiro, 31-Jan-2014.)
|
|
|
Theorem | reccn2ap 11276* |
The reciprocal function is continuous. The class is just for
convenience in writing the proof and typically would be passed in as an
instance of eqid 2170. (Contributed by Mario Carneiro,
9-Feb-2014.)
Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
|
inf #
#
|
|
Theorem | cn1lem 11277* |
A sufficient condition for a function to be continuous. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
|
|
Theorem | abscn2 11278* |
The absolute value function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
|
|
Theorem | cjcn2 11279* |
The complex conjugate function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
|
|
Theorem | recn2 11280* |
The real part function is continuous. (Contributed by Mario Carneiro,
9-Feb-2014.)
|
|
|
Theorem | imcn2 11281* |
The imaginary part function is continuous. (Contributed by Mario
Carneiro, 9-Feb-2014.)
|
|
|
Theorem | climcn1lem 11282* |
The limit of a continuous function, theorem form. (Contributed by
Mario Carneiro, 9-Feb-2014.)
|
|
|
Theorem | climabs 11283* |
Limit of the absolute value of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
|
|
Theorem | climcj 11284* |
Limit of the complex conjugate of a sequence. Proposition 12-2.4(c)
of [Gleason] p. 172. (Contributed by
NM, 7-Jun-2006.) (Revised by
Mario Carneiro, 9-Feb-2014.)
|
|
|
Theorem | climre 11285* |
Limit of the real part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
|
|
Theorem | climim 11286* |
Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of
[Gleason] p. 172. (Contributed by NM,
7-Jun-2006.) (Revised by Mario
Carneiro, 9-Feb-2014.)
|
|
|
Theorem | climrecl 11287* |
The limit of a convergent real sequence is real. Corollary 12-2.5 of
[Gleason] p. 172. (Contributed by NM,
10-Sep-2005.)
|
|
|
Theorem | climge0 11288* |
A nonnegative sequence converges to a nonnegative number. (Contributed
by NM, 11-Sep-2005.)
|
|
|
Theorem | climadd 11289* |
Limit of the sum of two converging sequences. Proposition 12-2.1(a)
of [Gleason] p. 168. (Contributed
by NM, 24-Sep-2005.) (Proof
shortened by Mario Carneiro, 31-Jan-2014.)
|
|
|
Theorem | climmul 11290* |
Limit of the product of two converging sequences. Proposition
12-2.1(c) of [Gleason] p. 168.
(Contributed by NM, 27-Dec-2005.)
(Proof shortened by Mario Carneiro, 1-Feb-2014.)
|
|
|
Theorem | climsub 11291* |
Limit of the difference of two converging sequences. Proposition
12-2.1(b) of [Gleason] p. 168.
(Contributed by NM, 4-Aug-2007.)
(Proof shortened by Mario Carneiro, 1-Feb-2014.)
|
|
|
Theorem | climaddc1 11292* |
Limit of a constant
added to each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
3-Feb-2014.)
|
|
|
Theorem | climaddc2 11293* |
Limit of a constant
added to each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
3-Feb-2014.)
|
|
|
Theorem | climmulc2 11294* |
Limit of a sequence multiplied by a constant . Corollary
12-2.2 of [Gleason] p. 171.
(Contributed by NM, 24-Sep-2005.)
(Revised by Mario Carneiro, 3-Feb-2014.)
|
|
|
Theorem | climsubc1 11295* |
Limit of a constant
subtracted from each term of a sequence.
(Contributed by Mario Carneiro, 9-Feb-2014.)
|
|
|
Theorem | climsubc2 11296* |
Limit of a constant
minus each term of a sequence.
(Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro,
9-Feb-2014.)
|
|
|
Theorem | climle 11297* |
Comparison of the limits of two sequences. (Contributed by Paul
Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
|
|
|
Theorem | climsqz 11298* |
Convergence of a sequence sandwiched between another converging
sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by
Mario Carneiro, 3-Feb-2014.)
|
|
|
Theorem | climsqz2 11299* |
Convergence of a sequence sandwiched between another converging
sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised
by Mario Carneiro, 3-Feb-2014.)
|
|
|
Theorem | clim2ser 11300* |
The limit of an infinite series with an initial segment removed.
(Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario
Carneiro, 1-Feb-2014.)
|
|