HomeHome Intuitionistic Logic Explorer
Theorem List (p. 113 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11201-11300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrpmincl 11201 The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
Theorembdtrilem 11202 Lemma for bdtri 11203. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  (
 ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C ) ) ) 
 <_  ( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) )
 
Theorembdtri 11203 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( {
 ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
 ) )
 
Theoremmul0inf 11204 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11026 and mulap0bd 8575 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )
 
Theoremmingeb 11205 Equivalence of  <_ and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <-> inf ( { A ,  B } ,  RR ,  <  )  =  A ) )
 
Theorem2zinfmin 11206 Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> inf ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  A ,  B )
 )
 
4.7.7  The maximum of two extended reals
 
Theoremxrmaxleim 11207 Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
 
Theoremxrmaxiflemcl 11208 Lemma for xrmaxif 11214. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
 
Theoremxrmaxifle 11209 An upper bound for  { A ,  B } in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
 
Theoremxrmaxiflemab 11210 Lemma for xrmaxif 11214. A variation of xrmaxleim 11207- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
 ) ) ) )  =  B )
 
Theoremxrmaxiflemlub 11211 Lemma for xrmaxif 11214. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 28-Apr-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )   =>    |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremxrmaxiflemcom 11212 Lemma for xrmaxif 11214. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
 
Theoremxrmaxiflemval 11213* Lemma for xrmaxif 11214. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\ 
 A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  <  M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
 
Theoremxrmaxif 11214 Maximum of two extended reals in terms of  if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
 ) ) ) ) )
 
Theoremxrmaxcl 11215 The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
Theoremxrmax1sup 11216 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  )
 )
 
Theoremxrmax2sup 11217 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  )
 )
 
Theoremxrmaxrecl 11218 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
 
Theoremxrmaxleastlt 11219 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  C  <  sup ( { A ,  B } ,  RR* ,  <  ) ) )  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremxrltmaxsup 11220 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( C  <  sup ( { A ,  B } ,  RR* ,  <  )  <->  ( C  <  A  \/  C  <  B ) ) )
 
Theoremxrmaxltsup 11221 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
Theoremxrmaxlesup 11222 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  ) 
 <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
Theoremxrmaxaddlem 11223 Lemma for xrmaxadd 11224. The case where  A is real. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR*
 ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremxrmaxadd 11224 Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
4.7.8  The minimum of two extended reals
 
Theoremxrnegiso 11225 Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  F  =  ( x  e.  RR*  |->  -e
 x )   =>    |-  ( F  Isom  <  ,  `'  <  ( RR* ,  RR* )  /\  `' F  =  F )
 
Theoreminfxrnegsupex 11226* The infimum of a set of extended reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )   &    |-  ( ph  ->  A 
 C_  RR* )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e z  e.  A } ,  RR* ,  <  ) )
 
Theoremxrnegcon1d 11227 Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )
 
Theoremxrminmax 11228 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
 
Theoremxrmincl 11229 The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
Theoremxrmin1inf 11230 The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  A )
 
Theoremxrmin2inf 11231 The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  B )
 
Theoremxrmineqinf 11232 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  B )
 
Theoremxrltmininf 11233 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B 
 /\  A  <  C ) ) )
 
Theoremxrlemininf 11234 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <_  B 
 /\  A  <_  C ) ) )
 
Theoremxrminltinf 11235 Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  ( B  <  A  \/  C  <  A ) ) )
 
Theoremxrminrecl 11236 The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR* ,  <  )  = inf ( { A ,  B } ,  RR ,  <  )
 )
 
Theoremxrminrpcl 11237 The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
 
Theoremxrminadd 11238 Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  -> inf ( {
 ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremxrbdtri 11239 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  ) 
 <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremiooinsup 11240 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A (,) B )  i^i  ( C (,) D ) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
 ) )
 
4.8  Elementary limits and convergence
 
4.8.1  Limits
 
Syntaxcli 11241 Extend class notation with convergence relation for limits.
 class  ~~>
 
Definitiondf-clim 11242* Define the limit relation for complex number sequences. See clim 11244 for its relational expression. (Contributed by NM, 28-Aug-2005.)
 |-  ~~>  =  { <. f ,  y >.  |  ( y  e. 
 CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( f `  k )  e.  CC  /\  ( abs `  ( ( f `
  k )  -  y ) )  < 
 x ) ) }
 
Theoremclimrel 11243 The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |- 
 Rel 
 ~~>
 
Theoremclim 11244* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer 
j such that the absolute difference of any later complex number in the sequence and the limit is less than  x. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  ZZ )  ->  ( F `  k
 )  =  B )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  ( A  e.  CC  /\ 
 A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclimcl 11245 Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  ~~>  A  ->  A  e.  CC )
 
Theoremclim2 11246* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A, with more general quantifier restrictions than clim 11244. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclim2c 11247* Express the predicate  F converges to  A. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( B  -  A ) )  <  x ) )
 
Theoremclim0 11248* Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   =>    |-  ( ph  ->  ( F 
 ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  B )  < 
 x ) ) )
 
Theoremclim0c 11249* Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  B )  <  x ) )
 
Theoremclimi 11250* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
 
Theoremclimi2 11251* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  ( B  -  A ) )  <  C )
 
Theoremclimi0 11252* Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  0 )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  B )  <  C )
 
Theoremclimconst 11253* An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  A )   =>    |-  ( ph  ->  F  ~~>  A )
 
Theoremclimconst2 11254 A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ZZ>= `  M )  C_  Z   &    |-  Z  e.  _V   =>    |-  (
 ( A  e.  CC  /\  M  e.  ZZ )  ->  ( Z  X.  { A } )  ~~>  A )
 
Theoremclimz 11255 The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ZZ  X.  {
 0 } )  ~~>  0
 
Theoremclimuni 11256 An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( F  ~~>  A  /\  F 
 ~~>  B )  ->  A  =  B )
 
Theoremfclim 11257 The limit relation is function-like, and with range the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ~~>  : dom  ~~>  --> CC
 
Theoremclimdm 11258 Two ways to express that a function has a limit. (The expression  (  ~~>  `  F
) is sometimes useful as a shorthand for "the unique limit of the function  F"). (Contributed by Mario Carneiro, 18-Mar-2014.)
 |-  ( F  e.  dom  ~~>  <->  F  ~~>  ( 
 ~~>  `  F ) )
 
Theoremclimeu 11259* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
 |-  ( F  ~~>  A  ->  E! x  F  ~~>  x )
 
Theoremclimreu 11260* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
 |-  ( F  ~~>  A  ->  E! x  e.  CC  F  ~~>  x )
 
Theoremclimmo 11261* An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013.)
 |- 
 E* x  F  ~~>  x
 
Theoremclimeq 11262* Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  ( G `
  k ) )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  G  ~~>  A ) )
 
Theoremclimmpt 11263* Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  G  =  ( k  e.  Z  |->  ( F `  k ) )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
 
Theorem2clim 11264* If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  x )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclimshftlemg 11265 A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  ->  ( F  shift  M )  ~~>  A )
 )
 
Theoremclimres 11266 A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  |`  ( ZZ>= `  M )
 )  ~~>  A  <->  F  ~~>  A ) )
 
Theoremclimshft 11267 A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F 
 shift  M )  ~~>  A  <->  F  ~~>  A ) )
 
Theoremserclim0 11268 The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  ( M  e.  ZZ  ->  seq M (  +  ,  ( ( ZZ>= `  M )  X.  { 0 } ) )  ~~>  0 )
 
Theoremclimshft2 11269* A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
 ) )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  G  ~~>  A ) )
 
Theoremclimabs0 11270* Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k ) ) )   =>    |-  ( ph  ->  ( F 
 ~~>  0  <->  G  ~~>  0 ) )
 
Theoremclimcn1 11271* Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  z  e.  B )  ->  ( F `  z )  e. 
 CC )   &    |-  ( ph  ->  G  ~~>  A )   &    |-  ( ph  ->  H  e.  W )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( F `  A ) )
 
Theoremclimcn2 11272* Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ( ph  /\  ( u  e.  C  /\  v  e.  D ) )  ->  ( u F v )  e. 
 CC )   &    |-  ( ph  ->  G  ~~>  A )   &    |-  ( ph  ->  H  ~~>  B )   &    |-  ( ph  ->  K  e.  W )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
 z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  C )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  e.  D )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( K `  k
 )  =  ( ( G `  k ) F ( H `  k ) ) )   =>    |-  ( ph  ->  K  ~~>  ( A F B ) )
 
Theoremaddcn2 11273* Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 13346 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  +  v
 )  -  ( B  +  C ) ) )  <  A ) )
 
Theoremsubcn2 11274* Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  -  v
 )  -  ( B  -  C ) ) )  <  A ) )
 
Theoremmulcn2 11275* Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  x.  v
 )  -  ( B  x.  C ) ) )  <  A ) )
 
Theoremreccn2ap 11276* The reciprocal function is continuous. The class  T is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2170. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
 |-  T  =  (inf ( { 1 ,  (
 ( abs `  A )  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )   =>    |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  { w  e.  CC  |  w #  0 }  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( (
 1  /  z )  -  ( 1  /  A ) ) )  <  B ) )
 
Theoremcn1lem 11277* A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  F : CC --> CC   &    |-  (
 ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
 ( F `  z
 )  -  ( F `
  A ) ) )  <_  ( abs `  ( z  -  A ) ) )   =>    |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <  x ) )
 
Theoremabscn2 11278* The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( abs `  z
 )  -  ( abs `  A ) ) )  <  x ) )
 
Theoremcjcn2 11279* The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( * `  z )  -  ( * `  A ) ) )  <  x ) )
 
Theoremrecn2 11280* The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( Re `  z )  -  ( Re `  A ) ) )  <  x ) )
 
Theoremimcn2 11281* The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( Im `  z )  -  ( Im `  A ) ) )  <  x ) )
 
Theoremclimcn1lem 11282* The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  H : CC --> CC   &    |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( H `  z )  -  ( H `  A ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( H `
  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( H `  A ) )
 
Theoremclimabs 11283* Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( abs `  ( F `  k
 ) ) )   =>    |-  ( ph  ->  G  ~~>  ( abs `  A )
 )
 
Theoremclimcj 11284* Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( * `
  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( * `  A ) )
 
Theoremclimre 11285* Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( Re
 `  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( Re `  A ) )
 
Theoremclimim 11286* Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( Im
 `  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( Im `  A ) )
 
Theoremclimrecl 11287* The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremclimge0 11288* A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremclimadd 11289* Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  +  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  +  B ) )
 
Theoremclimmul 11290* Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  x.  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  x.  B ) )
 
Theoremclimsub 11291* Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  -  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  -  B ) )
 
Theoremclimaddc1 11292* Limit of a constant  C added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `  k )  +  C ) )   =>    |-  ( ph  ->  G  ~~>  ( A  +  C ) )
 
Theoremclimaddc2 11293* Limit of a constant  C added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  +  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  +  A ) )
 
Theoremclimmulc2 11294* Limit of a sequence multiplied by a constant  C. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  x.  A ) )
 
Theoremclimsubc1 11295* Limit of a constant  C subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `  k )  -  C ) )   =>    |-  ( ph  ->  G  ~~>  ( A  -  C ) )
 
Theoremclimsubc2 11296* Limit of a constant  C minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  -  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  -  A ) )
 
Theoremclimle 11297* Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremclimsqz 11298* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  <_  A )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclimsqz2 11299* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  <_  ( G `  k ) )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclim2ser 11300* The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq ( N  +  1 ) (  +  ,  F )  ~~>  ( A  -  (  seq M (  +  ,  F ) `  N ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >