HomeHome Intuitionistic Logic Explorer
Theorem List (p. 113 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11201-11300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsumsplitdc 11201* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  ( A  u.  B )  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z )  -> DECID  k  e.  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
 0 ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
 0 ) )   &    |-  (
 ( ph  /\  k  e.  ( A  u.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremfsump1i 11202* Optimized version of fsump1 11189 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  N  =  ( K  +  1 )   &    |-  ( k  =  N  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ph  ->  ( K  e.  Z  /\  sum_
 k  e.  ( M
 ... K ) A  =  S ) )   &    |-  ( ph  ->  ( S  +  B )  =  T )   =>    |-  ( ph  ->  ( N  e.  Z  /\  sum_
 k  e.  ( M
 ... N ) A  =  T ) )
 
Theoremfsum2dlemstep 11203* Lemma for fsum2d 11204- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  -.  y  e.  x )   &    |-  ( ph  ->  ( x  u.  { y } )  C_  A )   &    |-  ( ph  ->  x  e.  Fin )   &    |-  ( ps 
 <-> 
 sum_ j  e.  x  sum_
 k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )   =>    |-  ( ( ph  /\  ps )  ->  sum_ j  e.  ( x  u.  { y }
 ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  { y }
 ) ( { j }  X.  B ) D )
 
Theoremfsum2d 11204* Write a double sum as a sum over a two-dimensional region. Note that  B ( j ) is a function of  j. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
 
Theoremfsumxp 11205* Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  ( A  X.  B ) D )
 
Theoremfsumcnv 11206* Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  ( x  =  <. j ,  k >.  ->  B  =  D )   &    |-  ( y  = 
 <. k ,  j >.  ->  C  =  D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  Rel  A )   &    |-  ( ( ph  /\  x  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ x  e.  A  B  =  sum_ y  e.  `'  A C )
 
Theoremfisumcom2 11207* Interchange order of summation. Note that  B ( j ) and  D
( k ) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  k  e.  C ) 
 ->  D  e.  Fin )   &    |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  E  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  E  =  sum_ k  e.  C  sum_ j  e.  D  E )
 
Theoremfsumcom 11208* Interchange order of summation. (Contributed by NM, 15-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_
 k  e.  B  C  =  sum_ k  e.  B  sum_
 j  e.  A  C )
 
Theoremfsum0diaglem 11209* Lemma for fisum0diag 11210. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
 |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  (
 0 ... ( N  -  j ) ) ) 
 ->  ( k  e.  (
 0 ... N )  /\  j  e.  ( 0 ... ( N  -  k
 ) ) ) )
 
Theoremfisum0diag 11210* Two ways to express "the sum of  A ( j ,  k ) over the triangular region  M  <_  j,  M  <_  k,  j  +  k  <_  N." (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
 |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  sum_ j  e.  ( 0 ... N ) sum_ k  e.  (
 0 ... ( N  -  j ) ) A  =  sum_ k  e.  (
 0 ... N ) sum_ j  e.  ( 0 ... ( N  -  k
 ) ) A )
 
Theoremmptfzshft 11211* 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  (
 j  e.  ( ( M  +  K )
 ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K )
 ... ( N  +  K ) ) -1-1-onto-> ( M
 ... N ) )
 
Theoremfsumrev 11212* Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( K  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M ) ) B )
 
Theoremfsumshft 11213* Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  -  K )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K ) ) B )
 
Theoremfsumshftm 11214* Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  +  K )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K ) ) B )
 
Theoremfisumrev2 11215* Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( ( M  +  N )  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N ) B )
 
Theoremfisum0diag2 11216* Two ways to express "the sum of  A ( j ,  k ) over the triangular region  0  <_  j, 
0  <_  k,  j  +  k  <_  N." (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( x  =  k 
 ->  B  =  A )   &    |-  ( x  =  (
 k  -  j ) 
 ->  B  =  C )   &    |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  sum_ j  e.  ( 0 ... N ) sum_ k  e.  (
 0 ... ( N  -  j ) ) A  =  sum_ k  e.  (
 0 ... N ) sum_ j  e.  ( 0 ... k ) C )
 
Theoremfsummulc2 11217* A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B ) )
 
Theoremfsummulc1 11218* A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  x.  C )  =  sum_ k  e.  A  ( B  x.  C ) )
 
Theoremfsumdivapc 11219* A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  /  C )  =  sum_ k  e.  A  ( B 
 /  C ) )
 
Theoremfsumneg 11220* Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  -u B  =  -u sum_ k  e.  A  B )
 
Theoremfsumsub 11221* Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  ( B  -  C )  =  ( sum_ k  e.  A  B  -  sum_ k  e.  A  C ) )
 
Theoremfsum2mul 11222* Separate the nested sum of the product  C ( j )  x.  D ( k ). (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  D  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_
 k  e.  B  ( C  x.  D )  =  ( sum_ j  e.  A  C  x.  sum_ k  e.  B  D ) )
 
Theoremfsumconst 11223* The sum of constant terms ( k is not free in  B). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
 sum_ k  e.  A  B  =  ( ( `  A )  x.  B ) )
 
Theoremfsumdifsnconst 11224* The sum of constant terms ( k is not free in  C) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  CC )  -> 
 sum_ k  e.  ( A  \  { B }
 ) C  =  ( ( ( `  A )  -  1 )  x.  C ) )
 
Theoremmodfsummodlem1 11225* Lemma for modfsummod 11227. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
 |-  ( A. k  e.  ( A  u.  {
 z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
 
Theoremmodfsummodlemstep 11226* Induction step for modfsummod 11227. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  A. k  e.  ( A  u.  { z }
 ) B  e.  ZZ )   &    |-  ( ph  ->  -.  z  e.  A )   &    |-  ( ph  ->  (
 sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N ) 
 mod  N ) )   =>    |-  ( ph  ->  (
 sum_ k  e.  ( A  u.  { z }
 ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N ) 
 mod  N ) )
 
Theoremmodfsummod 11227* A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B 
 mod  N )  mod  N ) )
 
Theoremfsumge0 11228* If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   =>    |-  ( ph  ->  0  <_ 
 sum_ k  e.  A  B )
 
Theoremfsumlessfi 11229* A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  C  e.  Fin )   =>    |-  ( ph  ->  sum_ k  e.  C  B  <_  sum_ k  e.  A  B )
 
Theoremfsumge1 11230* A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   &    |-  ( k  =  M  ->  B  =  C )   &    |-  ( ph  ->  M  e.  A )   =>    |-  ( ph  ->  C 
 <_  sum_ k  e.  A  B )
 
Theoremfsum00 11231* A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  =  0 )
 )
 
Theoremfsumle 11232* If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <_  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
 
Theoremfsumlt 11233* If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <  sum_ k  e.  A  C )
 
Theoremfsumabs 11234* Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B )
 )
 
Theoremtelfsumo 11235* Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  N  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
 
Theoremtelfsumo2 11236* Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  N  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( C  -  B )  =  ( E  -  D ) )
 
Theoremtelfsum 11237* Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  +  1 ) ) ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) ( B  -  C )  =  ( D  -  E ) )
 
Theoremtelfsum2 11238* Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  +  1 ) ) ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) ( C  -  B )  =  ( E  -  D ) )
 
Theoremfsumparts 11239* Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( k  =  j 
 ->  ( A  =  B  /\  V  =  W ) )   &    |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X ) )   &    |-  (
 k  =  M  ->  ( A  =  D  /\  V  =  Y )
 )   &    |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_
 j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
 
Theoremfsumrelem 11240* Lemma for fsumre 11241, fsumim 11242, and fsumcj 11243. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  F : CC --> CC   &    |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  ( x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )   =>    |-  ( ph  ->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `
  B ) )
 
Theoremfsumre 11241* The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( Re `  B ) )
 
Theoremfsumim 11242* The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( Im `  B ) )
 
Theoremfsumcj 11243* The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( * `  B ) )
 
Theoremiserabs 11244* Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  A )   &    |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( abs `  ( F `  k
 ) ) )   =>    |-  ( ph  ->  ( abs `  A )  <_  B )
 
Theoremcvgcmpub 11245* An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k ) )   =>    |-  ( ph  ->  B  <_  A )
 
Theoremfsumiun 11246* Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  Fin )   &    |-  ( ph  -> Disj  x  e.  A  B )   &    |-  ( ( ph  /\  ( x  e.  A  /\  k  e.  B )
 )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
 
Theoremhashiun 11247* The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  Fin )   &    |-  ( ph  -> Disj  x  e.  A  B )   =>    |-  ( ph  ->  ( ` 
 U_ x  e.  A  B )  =  sum_ x  e.  A  ( `  B ) )
 
Theoremhash2iun 11248* The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  Fin )   &    |-  (
 ( ph  /\  x  e.  A  /\  y  e.  B )  ->  C  e.  Fin )   &    |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )   &    |-  (
 ( ph  /\  x  e.  A )  -> Disj  y  e.  B  C )   =>    |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  =  sum_ x  e.  A  sum_ y  e.  B  ( `  C ) )
 
Theoremhash2iun1dif1 11249* The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  B  =  ( A  \  { x } )   &    |-  ( ( ph  /\  x  e.  A  /\  y  e.  B )  ->  C  e.  Fin )   &    |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )   &    |-  ( ( ph  /\  x  e.  A )  -> Disj  y  e.  B  C )   &    |-  (
 ( ph  /\  x  e.  A  /\  y  e.  B )  ->  ( `  C )  =  1 )   =>    |-  ( ph  ->  ( ` 
 U_ x  e.  A  U_ y  e.  B  C )  =  ( ( `  A )  x.  (
 ( `  A )  -  1 ) ) )
 
Theoremhashrabrex 11250* The number of elements in a class abstraction with a restricted existential quantification. (Contributed by Alexander van der Vekens, 29-Jul-2018.)
 |-  ( ph  ->  Y  e.  Fin )   &    |-  ( ( ph  /\  y  e.  Y ) 
 ->  { x  e.  X  |  ps }  e.  Fin )   &    |-  ( ph  -> Disj  y  e.  Y  { x  e.  X  |  ps }
 )   =>    |-  ( ph  ->  ( ` 
 { x  e.  X  |  E. y  e.  Y  ps } )  =  sum_ y  e.  Y  ( `  { x  e.  X  |  ps }
 ) )
 
Theoremhashuni 11251* The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A 
 C_  Fin )   &    |-  ( ph  -> Disj  x  e.  A  x )   =>    |-  ( ph  ->  ( `  U. A )  = 
 sum_ x  e.  A  ( `  x ) )
 
4.8.3  The binomial theorem
 
Theorembinomlem 11252* Lemma for binom 11253 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ps  ->  (
 ( A  +  B ) ^ N )  = 
 sum_ k  e.  (
 0 ... N ) ( ( N  _C  k
 )  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
 k ) ) ) )   =>    |-  ( ( ph  /\  ps )  ->  ( ( A  +  B ) ^
 ( N  +  1 ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
 ) ) ) )
 
Theorembinom 11253* The binomial theorem:  ( A  +  B
) ^ N is the sum from  k  =  0 to  N of  ( N  _C  k )  x.  ( ( A ^
k )  x.  ( B ^ ( N  -  k ) ). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 11252. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  ( ( A  +  B ) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  ( ( A ^
 ( N  -  k
 ) )  x.  ( B ^ k ) ) ) )
 
Theorembinom1p 11254* Special case of the binomial theorem for  ( 1  +  A
) ^ N. (Contributed by Paul Chapman, 10-May-2007.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( ( 1  +  A ) ^ N )  =  sum_ k  e.  ( 0 ...
 N ) ( ( N  _C  k )  x.  ( A ^
 k ) ) )
 
Theorembinom11 11255* Special case of the binomial theorem for  2 ^ N. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( N  e.  NN0  ->  ( 2 ^ N )  =  sum_ k  e.  ( 0 ... N ) ( N  _C  k ) )
 
Theorembinom1dif 11256* A summation for the difference between  ( ( A  + 
1 ) ^ N
) and  ( A ^ N ). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
 
Theorembcxmaslem1 11257 Lemma for bcxmas 11258. (Contributed by Paul Chapman, 18-May-2007.)
 |-  ( A  =  B  ->  ( ( N  +  A )  _C  A )  =  ( ( N  +  B )  _C  B ) )
 
Theorembcxmas 11258* Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  ->  ( ( ( N  +  1 )  +  M )  _C  M )  =  sum_ j  e.  (
 0 ... M ) ( ( N  +  j
 )  _C  j )
 )
 
4.8.4  Infinite sums (cont.)
 
Theoremisumshft 11259* Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  ( M  +  K ) )   &    |-  (
 j  =  ( K  +  k )  ->  A  =  B )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  W ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
 
Theoremisumsplit 11260* Split off the first  N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  (
 sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A ) )
 
Theoremisum1p 11261* The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A ) )
 
Theoremisumnn0nn 11262* Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( k  =  0 
 ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  A  e.  CC )   &    |-  ( ph  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e. 
 NN0  A  =  ( B  +  sum_ k  e. 
 NN  A ) )
 
Theoremisumrpcl 11263* The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR+ )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  W  A  e.  RR+ )
 
Theoremisumle 11264* Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  <_  B )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  <_  sum_ k  e.  Z  B )
 
Theoremisumlessdc 11265* A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  B )   &    |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  B )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
 
4.8.5  Miscellaneous converging and diverging sequences
 
Theoremdivcnv 11266* The sequence of reciprocals of positive integers, multiplied by the factor  A, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
 |-  ( A  e.  CC  ->  ( n  e.  NN  |->  ( A  /  n ) )  ~~>  0 )
 
4.8.6  Arithmetic series
 
Theoremarisum 11267* Arithmetic series sum of the first 
N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1
 ... N ) k  =  ( ( ( N ^ 2 )  +  N )  / 
 2 ) )
 
Theoremarisum2 11268* Arithmetic series sum of the first 
N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0
 ... ( N  -  1 ) ) k  =  ( ( ( N ^ 2 )  -  N )  / 
 2 ) )
 
Theoremtrireciplem 11269 Lemma for trirecip 11270. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |-  F  =  ( n  e.  NN  |->  ( 1 
 /  ( n  x.  ( n  +  1
 ) ) ) )   =>    |-  seq 1 (  +  ,  F )  ~~>  1
 
Theoremtrirecip 11270 The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |- 
 sum_ k  e.  NN  ( 2  /  (
 k  x.  ( k  +  1 ) ) )  =  2
 
4.8.7  Geometric series
 
Theoremexpcnvap0 11271* A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexpcnvre 11272* A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexpcnv 11273* A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexplecnv 11274* A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_  ( A ^ k ) )   =>    |-  ( ph  ->  F  ~~>  0 )
 
Theoremgeosergap 11275* The value of the finite geometric series  A ^ M  +  A ^ ( M  + 
1 )  +...  +  A ^
( N  -  1 ). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  sum_ k  e.  ( M..^ N ) ( A ^ k
 )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
 
Theoremgeoserap 11276* The value of the finite geometric series  1  +  A ^
1  +  A ^
2  +...  +  A ^
( N  -  1 ). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  1 )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
 )  =  ( ( 1  -  ( A ^ N ) ) 
 /  ( 1  -  A ) ) )
 
Theorempwm1geoserap1 11277* The n-th power of a number decreased by 1 expressed by the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^ ( N  - 
1 ). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A #  1 )   =>    |-  ( ph  ->  (
 ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
 ) ) )
 
Theoremabsltap 11278 Less-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  B )   =>    |-  ( ph  ->  A #  B )
 
Theoremabsgtap 11279 Greater-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  B  <  ( abs `  A ) )   =>    |-  ( ph  ->  A #  B )
 
Theoremgeolim 11280* The partial sums in the infinite series  1  +  A ^
1  +  A ^
2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( A ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeolim2 11281* The partial sums in the geometric series  A ^ M  +  A ^ ( M  + 
1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  =  ( A ^
 k ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
 
Theoremgeoreclim 11282* The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  1  <  ( abs `  A ) )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( ( 1  /  A ) ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( A  /  ( A  -  1 ) ) )
 
Theoremgeo2sum 11283* The value of the finite geometric series  2 ^ -u 1  +  2 ^ -u 2  +...  +  2 ^
-u N, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  sum_ k  e.  (
 1 ... N ) ( A  /  ( 2 ^ k ) )  =  ( A  -  ( A  /  (
 2 ^ N ) ) ) )
 
Theoremgeo2sum2 11284* The value of the finite geometric series  1  +  2  + 
4  +  8  +...  +  2 ^ ( N  -  1 ). (Contributed by Mario Carneiro, 7-Sep-2016.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0..^ N ) ( 2 ^ k )  =  ( ( 2 ^ N )  -  1
 ) )
 
Theoremgeo2lim 11285* The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
 |-  F  =  ( k  e.  NN  |->  ( A 
 /  ( 2 ^
 k ) ) )   =>    |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
 
Theoremgeoisum 11286* The infinite sum of  1  +  A ^ 1  +  A ^ 2... is  ( 1  /  ( 1  -  A ) ). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN0  ( A ^ k )  =  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeoisumr 11287* The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  1  <  ( abs `  A ) ) 
 ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^ k
 )  =  ( A 
 /  ( A  -  1 ) ) )
 
Theoremgeoisum1 11288* The infinite sum of  A ^ 1  +  A ^ 2... is  ( A  /  ( 1  -  A ) ). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN  ( A ^ k )  =  ( A  /  (
 1  -  A ) ) )
 
Theoremgeoisum1c 11289* The infinite sum of  A  x.  ( R ^ 1 )  +  A  x.  ( R ^ 2 )... is  ( A  x.  R )  /  (
1  -  R ). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( A  x.  ( R ^
 k ) )  =  ( ( A  x.  R )  /  (
 1  -  R ) ) )
 
Theorem0.999... 11290 The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e.  9  /  1 0 ^ 1  +  9  /  1 0 ^ 2  +  9  / 
1 0 ^ 3  +  ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
 |- 
 sum_ k  e.  NN  ( 9  /  (; 1 0 ^ k ) )  =  1
 
Theoremgeoihalfsum 11291 Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 11288. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 11290 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
 |- 
 sum_ k  e.  NN  ( 1  /  (
 2 ^ k ) )  =  1
 
4.8.8  Ratio test for infinite series convergence
 
Theoremcvgratnnlembern 11292 Lemma for cvgratnn 11300. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  ( A ^ M )  < 
 ( ( 1  /  ( ( 1  /  A )  -  1
 ) )  /  M ) )
 
Theoremcvgratnnlemnexp 11293* Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 15-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( abs `  ( F `  N ) )  <_  ( ( abs `  ( F `  1 ) )  x.  ( A ^
 ( N  -  1
 ) ) ) )
 
Theoremcvgratnnlemmn 11294* Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 15-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( F `  N ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M ) ) ) )
 
Theoremcvgratnnlemseq 11295* Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( (  seq 1 (  +  ,  F ) `  N )  -  (  seq 1
 (  +  ,  F ) `  M ) )  =  sum_ i  e.  (
 ( M  +  1 ) ... N ) ( F `  i
 ) )
 
Theoremcvgratnnlemabsle 11296* Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs ` 
 sum_ i  e.  (
 ( M  +  1 ) ... N ) ( F `  i
 ) )  <_  (
 ( abs `  ( F `  M ) )  x. 
 sum_ i  e.  (
 ( M  +  1 ) ... N ) ( A ^ (
 i  -  M ) ) ) )
 
Theoremcvgratnnlemsumlt 11297* Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 23-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^
 ( i  -  M ) )  <  ( A 
 /  ( 1  -  A ) ) )
 
Theoremcvgratnnlemfm 11298* Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 23-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  ( abs `  ( F `  M ) )  < 
 ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) ) 
 /  A )  x.  ( ( abs `  ( F `  1 ) )  +  1 ) ) 
 /  M ) )
 
Theoremcvgratnnlemrate 11299* Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( (  seq 1
 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )  < 
 ( ( ( ( ( 1  /  (
 ( 1  /  A )  -  1 ) ) 
 /  A )  x.  ( ( abs `  ( F `  1 ) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
 
Theoremcvgratnn 11300* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms, then the infinite sum of the terms of  F converges to a complex number. Although this theorem is similar to cvgratz 11301 and cvgratgt0 11302, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11119 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  F )  e.  dom  ~~>  )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13250
  Copyright terms: Public domain < Previous  Next >