| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dtruarb | GIF version | ||
| Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). This theorem asserts the existence of two sets which do not equal each other; compare with dtruex 4595 in which we are given a set 𝑦 and go from there to a set 𝑥 which is not equal to it. (Contributed by Jim Kingdon, 2-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| dtruarb | ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | el 4211 | . . 3 ⊢ ∃𝑥 𝑧 ∈ 𝑥 | |
| 2 | ax-nul 4159 | . . . 4 ⊢ ∃𝑦∀𝑧 ¬ 𝑧 ∈ 𝑦 | |
| 3 | sp 1525 | . . . 4 ⊢ (∀𝑧 ¬ 𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑦) | |
| 4 | 2, 3 | eximii 1616 | . . 3 ⊢ ∃𝑦 ¬ 𝑧 ∈ 𝑦 | 
| 5 | eeanv 1951 | . . 3 ⊢ (∃𝑥∃𝑦(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦) ↔ (∃𝑥 𝑧 ∈ 𝑥 ∧ ∃𝑦 ¬ 𝑧 ∈ 𝑦)) | |
| 6 | 1, 4, 5 | mpbir2an 944 | . 2 ⊢ ∃𝑥∃𝑦(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦) | 
| 7 | nelneq2 2298 | . . 3 ⊢ ((𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦) → ¬ 𝑥 = 𝑦) | |
| 8 | 7 | 2eximi 1615 | . 2 ⊢ (∃𝑥∃𝑦(𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦) → ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦) | 
| 9 | 6, 8 | ax-mp 5 | 1 ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ∧ wa 104 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |