ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtruarb GIF version

Theorem dtruarb 4235
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). This theorem asserts the existence of two sets which do not equal each other; compare with dtruex 4607 in which we are given a set 𝑦 and go from there to a set 𝑥 which is not equal to it. (Contributed by Jim Kingdon, 2-Sep-2018.)
Assertion
Ref Expression
dtruarb 𝑥𝑦 ¬ 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtruarb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 el 4222 . . 3 𝑥 𝑧𝑥
2 ax-nul 4170 . . . 4 𝑦𝑧 ¬ 𝑧𝑦
3 sp 1534 . . . 4 (∀𝑧 ¬ 𝑧𝑦 → ¬ 𝑧𝑦)
42, 3eximii 1625 . . 3 𝑦 ¬ 𝑧𝑦
5 eeanv 1960 . . 3 (∃𝑥𝑦(𝑧𝑥 ∧ ¬ 𝑧𝑦) ↔ (∃𝑥 𝑧𝑥 ∧ ∃𝑦 ¬ 𝑧𝑦))
61, 4, 5mpbir2an 945 . 2 𝑥𝑦(𝑧𝑥 ∧ ¬ 𝑧𝑦)
7 nelneq2 2307 . . 3 ((𝑧𝑥 ∧ ¬ 𝑧𝑦) → ¬ 𝑥 = 𝑦)
872eximi 1624 . 2 (∃𝑥𝑦(𝑧𝑥 ∧ ¬ 𝑧𝑦) → ∃𝑥𝑦 ¬ 𝑥 = 𝑦)
96, 8ax-mp 5 1 𝑥𝑦 ¬ 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wal 1371  wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-13 2178  ax-14 2179  ax-ext 2187  ax-nul 4170  ax-pow 4218
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-cleq 2198  df-clel 2201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator