ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord3ex Unicode version

Theorem ord3ex 4220
Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
ord3ex  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  e.  _V

Proof of Theorem ord3ex
StepHypRef Expression
1 df-tp 3627 . 2  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  =  ( { (/)
,  { (/) } }  u.  { { (/) ,  { (/)
} } } )
2 pp0ex 4219 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
32pwex 4213 . . . 4  |-  ~P { (/)
,  { (/) } }  e.  _V
4 pwprss 3832 . . . 4  |-  ( {
(/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } }
)  C_  ~P { (/) ,  { (/) } }
53, 4ssexi 4168 . . 3  |-  ( {
(/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } }
)  e.  _V
6 snsspr2 3768 . . . 4  |-  { { (/)
,  { (/) } } }  C_  { { { (/)
} } ,  { (/)
,  { (/) } } }
7 unss2 3331 . . . 4  |-  ( { { (/) ,  { (/) } } }  C_  { { { (/) } } ,  { (/) ,  { (/) } } }  ->  ( { (/) ,  { (/) } }  u.  { { (/)
,  { (/) } } } )  C_  ( { (/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } } ) )
86, 7ax-mp 5 . . 3  |-  ( {
(/) ,  { (/) } }  u.  { { (/) ,  { (/)
} } } ) 
C_  ( { (/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } } )
95, 8ssexi 4168 . 2  |-  ( {
(/) ,  { (/) } }  u.  { { (/) ,  { (/)
} } } )  e.  _V
101, 9eqeltri 2266 1  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   _Vcvv 2760    u. cun 3152    C_ wss 3154   (/)c0 3447   ~Pcpw 3602   {csn 3619   {cpr 3620   {ctp 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator