| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord3ex | Unicode version | ||
| Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| ord3ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3651 |
. 2
| |
| 2 | pp0ex 4249 |
. . . . 5
| |
| 3 | 2 | pwex 4243 |
. . . 4
|
| 4 | pwprss 3860 |
. . . 4
| |
| 5 | 3, 4 | ssexi 4198 |
. . 3
|
| 6 | snsspr2 3793 |
. . . 4
| |
| 7 | unss2 3352 |
. . . 4
| |
| 8 | 6, 7 | ax-mp 5 |
. . 3
|
| 9 | 5, 8 | ssexi 4198 |
. 2
|
| 10 | 1, 9 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |