Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ord3ex | Unicode version |
Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
ord3ex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3591 | . 2 | |
2 | pp0ex 4175 | . . . . 5 | |
3 | 2 | pwex 4169 | . . . 4 |
4 | pwprss 3792 | . . . 4 | |
5 | 3, 4 | ssexi 4127 | . . 3 |
6 | snsspr2 3729 | . . . 4 | |
7 | unss2 3298 | . . . 4 | |
8 | 6, 7 | ax-mp 5 | . . 3 |
9 | 5, 8 | ssexi 4127 | . 2 |
10 | 1, 9 | eqeltri 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cvv 2730 cun 3119 wss 3121 c0 3414 cpw 3566 csn 3583 cpr 3584 ctp 3585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-tp 3591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |