ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuni Unicode version

Theorem pwuni 4178
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni  |-  A  C_  ~P U. A

Proof of Theorem pwuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elssuni 3824 . . 3  |-  ( x  e.  A  ->  x  C_ 
U. A )
2 vex 2733 . . . 4  |-  x  e. 
_V
32elpw 3572 . . 3  |-  ( x  e.  ~P U. A  <->  x 
C_  U. A )
41, 3sylibr 133 . 2  |-  ( x  e.  A  ->  x  e.  ~P U. A )
54ssriv 3151 1  |-  A  C_  ~P U. A
Colors of variables: wff set class
Syntax hints:    e. wcel 2141    C_ wss 3121   ~Pcpw 3566   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797
This theorem is referenced by:  uniexb  4458  2pwuninelg  6262  istopon  12805  eltg3i  12850  mopnfss  13241
  Copyright terms: Public domain W3C validator