ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuni Unicode version

Theorem pwuni 4171
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni  |-  A  C_  ~P U. A

Proof of Theorem pwuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elssuni 3817 . . 3  |-  ( x  e.  A  ->  x  C_ 
U. A )
2 vex 2729 . . . 4  |-  x  e. 
_V
32elpw 3565 . . 3  |-  ( x  e.  ~P U. A  <->  x 
C_  U. A )
41, 3sylibr 133 . 2  |-  ( x  e.  A  ->  x  e.  ~P U. A )
54ssriv 3146 1  |-  A  C_  ~P U. A
Colors of variables: wff set class
Syntax hints:    e. wcel 2136    C_ wss 3116   ~Pcpw 3559   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790
This theorem is referenced by:  uniexb  4451  2pwuninelg  6251  istopon  12651  eltg3i  12696  mopnfss  13087
  Copyright terms: Public domain W3C validator