ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuni Unicode version

Theorem pwuni 4244
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni  |-  A  C_  ~P U. A

Proof of Theorem pwuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elssuni 3884 . . 3  |-  ( x  e.  A  ->  x  C_ 
U. A )
2 vex 2776 . . . 4  |-  x  e. 
_V
32elpw 3627 . . 3  |-  ( x  e.  ~P U. A  <->  x 
C_  U. A )
41, 3sylibr 134 . 2  |-  ( x  e.  A  ->  x  e.  ~P U. A )
54ssriv 3201 1  |-  A  C_  ~P U. A
Colors of variables: wff set class
Syntax hints:    e. wcel 2177    C_ wss 3170   ~Pcpw 3621   U.cuni 3856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-pw 3623  df-uni 3857
This theorem is referenced by:  uniexb  4528  2pwuninelg  6382  istopon  14560  eltg3i  14603  mopnfss  14994
  Copyright terms: Public domain W3C validator