ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuni Unicode version

Theorem pwuni 4275
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni  |-  A  C_  ~P U. A

Proof of Theorem pwuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elssuni 3915 . . 3  |-  ( x  e.  A  ->  x  C_ 
U. A )
2 vex 2802 . . . 4  |-  x  e. 
_V
32elpw 3655 . . 3  |-  ( x  e.  ~P U. A  <->  x 
C_  U. A )
41, 3sylibr 134 . 2  |-  ( x  e.  A  ->  x  e.  ~P U. A )
54ssriv 3228 1  |-  A  C_  ~P U. A
Colors of variables: wff set class
Syntax hints:    e. wcel 2200    C_ wss 3197   ~Pcpw 3649   U.cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3888
This theorem is referenced by:  uniexb  4563  2pwuninelg  6427  istopon  14681  eltg3i  14724  mopnfss  15115
  Copyright terms: Public domain W3C validator