Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabd Unicode version

Theorem elabd 2829
 Description: Explicit demonstration the class is not empty by the example . (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
elab.xex
elab.xmaj
elab.xsub
Assertion
Ref Expression
elabd
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem elabd
StepHypRef Expression
1 elab.xex . 2
2 elab.xmaj . 2
3 elab.xsub . . 3
43spcegv 2774 . 2
51, 2, 4sylc 62 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104   wceq 1331  wex 1468   wcel 1480  cvv 2686 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688 This theorem is referenced by:  ntrivcvgap0  11330
 Copyright terms: Public domain W3C validator