ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabd Unicode version

Theorem elabd 2922
Description: Explicit demonstration the class  { x  |  ps } is not empty by the example  X. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
elab.xex  |-  ( ph  ->  X  e.  _V )
elab.xmaj  |-  ( ph  ->  ch )
elab.xsub  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
elabd  |-  ( ph  ->  E. x ps )
Distinct variable groups:    ch, x    x, X
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elabd
StepHypRef Expression
1 elab.xex . 2  |-  ( ph  ->  X  e.  _V )
2 elab.xmaj . 2  |-  ( ph  ->  ch )
3 elab.xsub . . 3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
43spcegv 2865 . 2  |-  ( X  e.  _V  ->  ( ch  ->  E. x ps )
)
51, 2, 4sylc 62 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2177   _Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  uchoice  6236  en2prd  6923  ntrivcvgap0  11935  ssomct  12891  dom1o  16067  dceqnconst  16140  dcapnconst  16141
  Copyright terms: Public domain W3C validator