ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabd Unicode version

Theorem elabd 2948
Description: Explicit demonstration the class  { x  |  ps } is not empty by the example  X. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
elab.xex  |-  ( ph  ->  X  e.  _V )
elab.xmaj  |-  ( ph  ->  ch )
elab.xsub  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
elabd  |-  ( ph  ->  E. x ps )
Distinct variable groups:    ch, x    x, X
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elabd
StepHypRef Expression
1 elab.xex . 2  |-  ( ph  ->  X  e.  _V )
2 elab.xmaj . 2  |-  ( ph  ->  ch )
3 elab.xsub . . 3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
43spcegv 2891 . 2  |-  ( X  e.  _V  ->  ( ch  ->  E. x ps )
)
51, 2, 4sylc 62 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  uchoice  6281  en2prd  6968  ntrivcvgap0  12055  ssomct  13011  wlkvtxiedgg  16042  dom1o  16314  dceqnconst  16387  dcapnconst  16388
  Copyright terms: Public domain W3C validator