Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elabd | Unicode version |
Description: Explicit demonstration the class is not empty by the example . (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
elab.xex | |
elab.xmaj | |
elab.xsub |
Ref | Expression |
---|---|
elabd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab.xex | . 2 | |
2 | elab.xmaj | . 2 | |
3 | elab.xsub | . . 3 | |
4 | 3 | spcegv 2818 | . 2 |
5 | 1, 2, 4 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wex 1485 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: ntrivcvgap0 11512 ssomct 12400 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |