ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabd Unicode version

Theorem elabd 2870
Description: Explicit demonstration the class  { x  |  ps } is not empty by the example  X. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
elab.xex  |-  ( ph  ->  X  e.  _V )
elab.xmaj  |-  ( ph  ->  ch )
elab.xsub  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
elabd  |-  ( ph  ->  E. x ps )
Distinct variable groups:    ch, x    x, X
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem elabd
StepHypRef Expression
1 elab.xex . 2  |-  ( ph  ->  X  e.  _V )
2 elab.xmaj . 2  |-  ( ph  ->  ch )
3 elab.xsub . . 3  |-  ( x  =  X  ->  ( ps 
<->  ch ) )
43spcegv 2813 . 2  |-  ( X  e.  _V  ->  ( ch  ->  E. x ps )
)
51, 2, 4sylc 62 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   _Vcvv 2725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727
This theorem is referenced by:  ntrivcvgap0  11486  ssomct  12374  dceqnconst  13898  dcapnconst  13899
  Copyright terms: Public domain W3C validator