Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dceqnconst Unicode version

Theorem dceqnconst 14463
Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 14459 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
dceqnconst  |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dceqnconst
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 7936 . . . 4  |-  RR  e.  _V
21mptex 5738 . . 3  |-  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  e.  _V
32a1i 9 . 2  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  e.  _V )
4 0zd 9254 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  0  e.  ZZ )
5 1zzd 9269 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  1  e.  ZZ )
6 eqeq1 2184 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  0  <->  y  =  0 ) )
76dcbid 838 . . . . . 6  |-  ( x  =  y  ->  (DECID  x  =  0  <-> DECID  y  =  0
) )
87rspccva 2840 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  -> DECID  y  =  0
)
94, 5, 8ifcldcd 3569 . . . 4  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  if ( y  =  0 ,  0 ,  1 )  e.  ZZ )
109fmpttd 5667 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ )
11 0re 7948 . . . . . 6  |-  0  e.  RR
12 0zd 9254 . . . . . . . 8  |-  ( T. 
->  0  e.  ZZ )
13 1zzd 9269 . . . . . . . 8  |-  ( T. 
->  1  e.  ZZ )
14 eqid 2177 . . . . . . . . . . 11  |-  0  =  0
1514orci 731 . . . . . . . . . 10  |-  ( 0  =  0  \/  -.  0  =  0 )
16 df-dc 835 . . . . . . . . . 10  |-  (DECID  0  =  0  <->  ( 0  =  0  \/  -.  0  =  0 ) )
1715, 16mpbir 146 . . . . . . . . 9  |- DECID  0  =  0
1817a1i 9 . . . . . . . 8  |-  ( T. 
-> DECID  0  =  0 )
1912, 13, 18ifcldcd 3569 . . . . . . 7  |-  ( T. 
->  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ )
2019mptru 1362 . . . . . 6  |-  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ
21 eqeq1 2184 . . . . . . . 8  |-  ( y  =  0  ->  (
y  =  0  <->  0  =  0 ) )
2221ifbid 3555 . . . . . . 7  |-  ( y  =  0  ->  if ( y  =  0 ,  0 ,  1 )  =  if ( 0  =  0 ,  0 ,  1 ) )
23 eqid 2177 . . . . . . 7  |-  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )
2422, 23fvmptg 5588 . . . . . 6  |-  ( ( 0  e.  RR  /\  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ )  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0 )  =  if ( 0  =  0 ,  0 ,  1 ) )
2511, 20, 24mp2an 426 . . . . 5  |-  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
)  =  if ( 0  =  0 ,  0 ,  1 )
2614iftruei 3540 . . . . 5  |-  if ( 0  =  0 ,  0 ,  1 )  =  0
2725, 26eqtri 2198 . . . 4  |-  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
)  =  0
2827a1i 9 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0 )
29 1ne0 8976 . . . . . 6  |-  1  =/=  0
30 eqeq1 2184 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y  =  0  <->  z  =  0 ) )
3130ifbid 3555 . . . . . . . . 9  |-  ( y  =  z  ->  if ( y  =  0 ,  0 ,  1 )  =  if ( z  =  0 ,  0 ,  1 ) )
32 rpre 9647 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z  e.  RR )
3332adantl 277 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  z  e.  RR )
34 0zd 9254 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  0  e.  ZZ )
35 1zzd 9269 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  1  e.  ZZ )
36 eqeq1 2184 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  =  0  <->  z  =  0 ) )
3736dcbid 838 . . . . . . . . . . 11  |-  ( x  =  z  ->  (DECID  x  =  0  <-> DECID  z  =  0
) )
38 simpl 109 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  A. x  e.  RR DECID  x  =  0 )
3937, 38, 33rspcdva 2846 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  -> DECID  z  =  0
)
4034, 35, 39ifcldcd 3569 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  if ( z  =  0 ,  0 ,  1 )  e.  ZZ )
4123, 31, 33, 40fvmptd3 5605 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  if ( z  =  0 ,  0 ,  1 ) )
42 rpne0 9656 . . . . . . . . . . 11  |-  ( z  e.  RR+  ->  z  =/=  0 )
4342neneqd 2368 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  -.  z  =  0 )
4443iffalsed 3544 . . . . . . . . 9  |-  ( z  e.  RR+  ->  if ( z  =  0 ,  0 ,  1 )  =  1 )
4544adantl 277 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  if ( z  =  0 ,  0 ,  1 )  =  1 )
4641, 45eqtrd 2210 . . . . . . 7  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  1 )
4746neeq1d 2365 . . . . . 6  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0  <->  1  =/=  0
) )
4829, 47mpbiri 168 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =/=  0 )
4948ralrimiva 2550 . . . 4  |-  ( A. x  e.  RR DECID  x  =  0  ->  A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0 )
50 fveq2 5511 . . . . . 6  |-  ( z  =  x  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
) )
5150neeq1d 2365 . . . . 5  |-  ( z  =  x  ->  (
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
5251cbvralv 2703 . . . 4  |-  ( A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
)  =/=  0 )
5349, 52sylib 122 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 x )  =/=  0 )
5410, 28, 533jca 1177 . 2  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
55 feq1 5344 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f : RR --> ZZ  <->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ ) )
56 fveq1 5510 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f ` 
0 )  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
) )
5756eqeq1d 2186 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f `
 0 )  =  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0 )  =  0 ) )
58 fveq1 5510 . . . . 5  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f `  x )  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
) )
5958neeq1d 2365 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f `
 x )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
6059ralbidv 2477 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( A. x  e.  RR+  ( f `  x )  =/=  0  <->  A. x  e.  RR+  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
)  =/=  0 ) )
6155, 57, 603anbi123d 1312 . 2  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 )  <-> 
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) ) )
623, 54, 61elabd 2882 1  |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353   T. wtru 1354   E.wex 1492    e. wcel 2148    =/= wne 2347   A.wral 2455   _Vcvv 2737   ifcif 3534    |-> cmpt 4061   -->wf 5208   ` cfv 5212   RRcr 7801   0cc0 7802   1c1 7803   ZZcz 9242   RR+crp 9640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-z 9243  df-rp 9641
This theorem is referenced by:  dcapnconstALT  14465
  Copyright terms: Public domain W3C validator