| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dceqnconst | Unicode version | ||
| Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 15699 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| dceqnconst | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reex 8013 | 
. . . 4
 | |
| 2 | 1 | mptex 5788 | 
. . 3
 | 
| 3 | 2 | a1i 9 | 
. 2
 | 
| 4 | 0zd 9338 | 
. . . . 5
 | |
| 5 | 1zzd 9353 | 
. . . . 5
 | |
| 6 | eqeq1 2203 | 
. . . . . . 7
 | |
| 7 | 6 | dcbid 839 | 
. . . . . 6
 | 
| 8 | 7 | rspccva 2867 | 
. . . . 5
 | 
| 9 | 4, 5, 8 | ifcldcd 3597 | 
. . . 4
 | 
| 10 | 9 | fmpttd 5717 | 
. . 3
 | 
| 11 | 0re 8026 | 
. . . . . 6
 | |
| 12 | 0zd 9338 | 
. . . . . . . 8
 | |
| 13 | 1zzd 9353 | 
. . . . . . . 8
 | |
| 14 | eqid 2196 | 
. . . . . . . . . . 11
 | |
| 15 | 14 | orci 732 | 
. . . . . . . . . 10
 | 
| 16 | df-dc 836 | 
. . . . . . . . . 10
 | |
| 17 | 15, 16 | mpbir 146 | 
. . . . . . . . 9
 | 
| 18 | 17 | a1i 9 | 
. . . . . . . 8
 | 
| 19 | 12, 13, 18 | ifcldcd 3597 | 
. . . . . . 7
 | 
| 20 | 19 | mptru 1373 | 
. . . . . 6
 | 
| 21 | eqeq1 2203 | 
. . . . . . . 8
 | |
| 22 | 21 | ifbid 3582 | 
. . . . . . 7
 | 
| 23 | eqid 2196 | 
. . . . . . 7
 | |
| 24 | 22, 23 | fvmptg 5637 | 
. . . . . 6
 | 
| 25 | 11, 20, 24 | mp2an 426 | 
. . . . 5
 | 
| 26 | 14 | iftruei 3567 | 
. . . . 5
 | 
| 27 | 25, 26 | eqtri 2217 | 
. . . 4
 | 
| 28 | 27 | a1i 9 | 
. . 3
 | 
| 29 | 1ne0 9058 | 
. . . . . 6
 | |
| 30 | eqeq1 2203 | 
. . . . . . . . . 10
 | |
| 31 | 30 | ifbid 3582 | 
. . . . . . . . 9
 | 
| 32 | rpre 9735 | 
. . . . . . . . . 10
 | |
| 33 | 32 | adantl 277 | 
. . . . . . . . 9
 | 
| 34 | 0zd 9338 | 
. . . . . . . . . 10
 | |
| 35 | 1zzd 9353 | 
. . . . . . . . . 10
 | |
| 36 | eqeq1 2203 | 
. . . . . . . . . . . 12
 | |
| 37 | 36 | dcbid 839 | 
. . . . . . . . . . 11
 | 
| 38 | simpl 109 | 
. . . . . . . . . . 11
 | |
| 39 | 37, 38, 33 | rspcdva 2873 | 
. . . . . . . . . 10
 | 
| 40 | 34, 35, 39 | ifcldcd 3597 | 
. . . . . . . . 9
 | 
| 41 | 23, 31, 33, 40 | fvmptd3 5655 | 
. . . . . . . 8
 | 
| 42 | rpne0 9744 | 
. . . . . . . . . . 11
 | |
| 43 | 42 | neneqd 2388 | 
. . . . . . . . . 10
 | 
| 44 | 43 | iffalsed 3571 | 
. . . . . . . . 9
 | 
| 45 | 44 | adantl 277 | 
. . . . . . . 8
 | 
| 46 | 41, 45 | eqtrd 2229 | 
. . . . . . 7
 | 
| 47 | 46 | neeq1d 2385 | 
. . . . . 6
 | 
| 48 | 29, 47 | mpbiri 168 | 
. . . . 5
 | 
| 49 | 48 | ralrimiva 2570 | 
. . . 4
 | 
| 50 | fveq2 5558 | 
. . . . . 6
 | |
| 51 | 50 | neeq1d 2385 | 
. . . . 5
 | 
| 52 | 51 | cbvralv 2729 | 
. . . 4
 | 
| 53 | 49, 52 | sylib 122 | 
. . 3
 | 
| 54 | 10, 28, 53 | 3jca 1179 | 
. 2
 | 
| 55 | feq1 5390 | 
. . 3
 | |
| 56 | fveq1 5557 | 
. . . 4
 | |
| 57 | 56 | eqeq1d 2205 | 
. . 3
 | 
| 58 | fveq1 5557 | 
. . . . 5
 | |
| 59 | 58 | neeq1d 2385 | 
. . . 4
 | 
| 60 | 59 | ralbidv 2497 | 
. . 3
 | 
| 61 | 55, 57, 60 | 3anbi123d 1323 | 
. 2
 | 
| 62 | 3, 54, 61 | elabd 2909 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 df-rp 9729 | 
| This theorem is referenced by: dcapnconstALT 15706 | 
| Copyright terms: Public domain | W3C validator |