Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dceqnconst Unicode version

Theorem dceqnconst 16359
Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 16354 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
dceqnconst  |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dceqnconst
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8121 . . . 4  |-  RR  e.  _V
21mptex 5858 . . 3  |-  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  e.  _V
32a1i 9 . 2  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  e.  _V )
4 0zd 9446 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  0  e.  ZZ )
5 1zzd 9461 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  1  e.  ZZ )
6 eqeq1 2236 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  0  <->  y  =  0 ) )
76dcbid 843 . . . . . 6  |-  ( x  =  y  ->  (DECID  x  =  0  <-> DECID  y  =  0
) )
87rspccva 2906 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  -> DECID  y  =  0
)
94, 5, 8ifcldcd 3640 . . . 4  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  if ( y  =  0 ,  0 ,  1 )  e.  ZZ )
109fmpttd 5783 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ )
11 0re 8134 . . . . . 6  |-  0  e.  RR
12 0zd 9446 . . . . . . . 8  |-  ( T. 
->  0  e.  ZZ )
13 1zzd 9461 . . . . . . . 8  |-  ( T. 
->  1  e.  ZZ )
14 eqid 2229 . . . . . . . . . . 11  |-  0  =  0
1514orci 736 . . . . . . . . . 10  |-  ( 0  =  0  \/  -.  0  =  0 )
16 df-dc 840 . . . . . . . . . 10  |-  (DECID  0  =  0  <->  ( 0  =  0  \/  -.  0  =  0 ) )
1715, 16mpbir 146 . . . . . . . . 9  |- DECID  0  =  0
1817a1i 9 . . . . . . . 8  |-  ( T. 
-> DECID  0  =  0 )
1912, 13, 18ifcldcd 3640 . . . . . . 7  |-  ( T. 
->  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ )
2019mptru 1404 . . . . . 6  |-  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ
21 eqeq1 2236 . . . . . . . 8  |-  ( y  =  0  ->  (
y  =  0  <->  0  =  0 ) )
2221ifbid 3624 . . . . . . 7  |-  ( y  =  0  ->  if ( y  =  0 ,  0 ,  1 )  =  if ( 0  =  0 ,  0 ,  1 ) )
23 eqid 2229 . . . . . . 7  |-  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )
2422, 23fvmptg 5703 . . . . . 6  |-  ( ( 0  e.  RR  /\  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ )  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0 )  =  if ( 0  =  0 ,  0 ,  1 ) )
2511, 20, 24mp2an 426 . . . . 5  |-  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
)  =  if ( 0  =  0 ,  0 ,  1 )
2614iftruei 3608 . . . . 5  |-  if ( 0  =  0 ,  0 ,  1 )  =  0
2725, 26eqtri 2250 . . . 4  |-  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
)  =  0
2827a1i 9 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0 )
29 1ne0 9166 . . . . . 6  |-  1  =/=  0
30 eqeq1 2236 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y  =  0  <->  z  =  0 ) )
3130ifbid 3624 . . . . . . . . 9  |-  ( y  =  z  ->  if ( y  =  0 ,  0 ,  1 )  =  if ( z  =  0 ,  0 ,  1 ) )
32 rpre 9844 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z  e.  RR )
3332adantl 277 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  z  e.  RR )
34 0zd 9446 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  0  e.  ZZ )
35 1zzd 9461 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  1  e.  ZZ )
36 eqeq1 2236 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  =  0  <->  z  =  0 ) )
3736dcbid 843 . . . . . . . . . . 11  |-  ( x  =  z  ->  (DECID  x  =  0  <-> DECID  z  =  0
) )
38 simpl 109 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  A. x  e.  RR DECID  x  =  0 )
3937, 38, 33rspcdva 2912 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  -> DECID  z  =  0
)
4034, 35, 39ifcldcd 3640 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  if ( z  =  0 ,  0 ,  1 )  e.  ZZ )
4123, 31, 33, 40fvmptd3 5721 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  if ( z  =  0 ,  0 ,  1 ) )
42 rpne0 9853 . . . . . . . . . . 11  |-  ( z  e.  RR+  ->  z  =/=  0 )
4342neneqd 2421 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  -.  z  =  0 )
4443iffalsed 3612 . . . . . . . . 9  |-  ( z  e.  RR+  ->  if ( z  =  0 ,  0 ,  1 )  =  1 )
4544adantl 277 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  if ( z  =  0 ,  0 ,  1 )  =  1 )
4641, 45eqtrd 2262 . . . . . . 7  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  1 )
4746neeq1d 2418 . . . . . 6  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0  <->  1  =/=  0
) )
4829, 47mpbiri 168 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =/=  0 )
4948ralrimiva 2603 . . . 4  |-  ( A. x  e.  RR DECID  x  =  0  ->  A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0 )
50 fveq2 5623 . . . . . 6  |-  ( z  =  x  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
) )
5150neeq1d 2418 . . . . 5  |-  ( z  =  x  ->  (
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
5251cbvralv 2765 . . . 4  |-  ( A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
)  =/=  0 )
5349, 52sylib 122 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 x )  =/=  0 )
5410, 28, 533jca 1201 . 2  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
55 feq1 5452 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f : RR --> ZZ  <->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ ) )
56 fveq1 5622 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f ` 
0 )  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
) )
5756eqeq1d 2238 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f `
 0 )  =  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0 )  =  0 ) )
58 fveq1 5622 . . . . 5  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f `  x )  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
) )
5958neeq1d 2418 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f `
 x )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
6059ralbidv 2530 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( A. x  e.  RR+  ( f `  x )  =/=  0  <->  A. x  e.  RR+  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
)  =/=  0 ) )
6155, 57, 603anbi123d 1346 . 2  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 )  <-> 
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) ) )
623, 54, 61elabd 2948 1  |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395   T. wtru 1396   E.wex 1538    e. wcel 2200    =/= wne 2400   A.wral 2508   _Vcvv 2799   ifcif 3602    |-> cmpt 4144   -->wf 5310   ` cfv 5314   RRcr 7986   0cc0 7987   1c1 7988   ZZcz 9434   RR+crp 9837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-z 9435  df-rp 9838
This theorem is referenced by:  dcapnconstALT  16361
  Copyright terms: Public domain W3C validator