| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dceqnconst | Unicode version | ||
| Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 16354 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.) |
| Ref | Expression |
|---|---|
| dceqnconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 8121 |
. . . 4
| |
| 2 | 1 | mptex 5858 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 0zd 9446 |
. . . . 5
| |
| 5 | 1zzd 9461 |
. . . . 5
| |
| 6 | eqeq1 2236 |
. . . . . . 7
| |
| 7 | 6 | dcbid 843 |
. . . . . 6
|
| 8 | 7 | rspccva 2906 |
. . . . 5
|
| 9 | 4, 5, 8 | ifcldcd 3640 |
. . . 4
|
| 10 | 9 | fmpttd 5783 |
. . 3
|
| 11 | 0re 8134 |
. . . . . 6
| |
| 12 | 0zd 9446 |
. . . . . . . 8
| |
| 13 | 1zzd 9461 |
. . . . . . . 8
| |
| 14 | eqid 2229 |
. . . . . . . . . . 11
| |
| 15 | 14 | orci 736 |
. . . . . . . . . 10
|
| 16 | df-dc 840 |
. . . . . . . . . 10
| |
| 17 | 15, 16 | mpbir 146 |
. . . . . . . . 9
|
| 18 | 17 | a1i 9 |
. . . . . . . 8
|
| 19 | 12, 13, 18 | ifcldcd 3640 |
. . . . . . 7
|
| 20 | 19 | mptru 1404 |
. . . . . 6
|
| 21 | eqeq1 2236 |
. . . . . . . 8
| |
| 22 | 21 | ifbid 3624 |
. . . . . . 7
|
| 23 | eqid 2229 |
. . . . . . 7
| |
| 24 | 22, 23 | fvmptg 5703 |
. . . . . 6
|
| 25 | 11, 20, 24 | mp2an 426 |
. . . . 5
|
| 26 | 14 | iftruei 3608 |
. . . . 5
|
| 27 | 25, 26 | eqtri 2250 |
. . . 4
|
| 28 | 27 | a1i 9 |
. . 3
|
| 29 | 1ne0 9166 |
. . . . . 6
| |
| 30 | eqeq1 2236 |
. . . . . . . . . 10
| |
| 31 | 30 | ifbid 3624 |
. . . . . . . . 9
|
| 32 | rpre 9844 |
. . . . . . . . . 10
| |
| 33 | 32 | adantl 277 |
. . . . . . . . 9
|
| 34 | 0zd 9446 |
. . . . . . . . . 10
| |
| 35 | 1zzd 9461 |
. . . . . . . . . 10
| |
| 36 | eqeq1 2236 |
. . . . . . . . . . . 12
| |
| 37 | 36 | dcbid 843 |
. . . . . . . . . . 11
|
| 38 | simpl 109 |
. . . . . . . . . . 11
| |
| 39 | 37, 38, 33 | rspcdva 2912 |
. . . . . . . . . 10
|
| 40 | 34, 35, 39 | ifcldcd 3640 |
. . . . . . . . 9
|
| 41 | 23, 31, 33, 40 | fvmptd3 5721 |
. . . . . . . 8
|
| 42 | rpne0 9853 |
. . . . . . . . . . 11
| |
| 43 | 42 | neneqd 2421 |
. . . . . . . . . 10
|
| 44 | 43 | iffalsed 3612 |
. . . . . . . . 9
|
| 45 | 44 | adantl 277 |
. . . . . . . 8
|
| 46 | 41, 45 | eqtrd 2262 |
. . . . . . 7
|
| 47 | 46 | neeq1d 2418 |
. . . . . 6
|
| 48 | 29, 47 | mpbiri 168 |
. . . . 5
|
| 49 | 48 | ralrimiva 2603 |
. . . 4
|
| 50 | fveq2 5623 |
. . . . . 6
| |
| 51 | 50 | neeq1d 2418 |
. . . . 5
|
| 52 | 51 | cbvralv 2765 |
. . . 4
|
| 53 | 49, 52 | sylib 122 |
. . 3
|
| 54 | 10, 28, 53 | 3jca 1201 |
. 2
|
| 55 | feq1 5452 |
. . 3
| |
| 56 | fveq1 5622 |
. . . 4
| |
| 57 | 56 | eqeq1d 2238 |
. . 3
|
| 58 | fveq1 5622 |
. . . . 5
| |
| 59 | 58 | neeq1d 2418 |
. . . 4
|
| 60 | 59 | ralbidv 2530 |
. . 3
|
| 61 | 55, 57, 60 | 3anbi123d 1346 |
. 2
|
| 62 | 3, 54, 61 | elabd 2948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-z 9435 df-rp 9838 |
| This theorem is referenced by: dcapnconstALT 16361 |
| Copyright terms: Public domain | W3C validator |