Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dceqnconst Unicode version

Theorem dceqnconst 13938
Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 13934 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.)
Assertion
Ref Expression
dceqnconst  |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dceqnconst
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 7887 . . . 4  |-  RR  e.  _V
21mptex 5711 . . 3  |-  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  e.  _V
32a1i 9 . 2  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  e.  _V )
4 0zd 9203 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  0  e.  ZZ )
5 1zzd 9218 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  1  e.  ZZ )
6 eqeq1 2172 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  0  <->  y  =  0 ) )
76dcbid 828 . . . . . 6  |-  ( x  =  y  ->  (DECID  x  =  0  <-> DECID  y  =  0
) )
87rspccva 2829 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  -> DECID  y  =  0
)
94, 5, 8ifcldcd 3555 . . . 4  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  y  e.  RR )  ->  if ( y  =  0 ,  0 ,  1 )  e.  ZZ )
109fmpttd 5640 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ )
11 0re 7899 . . . . . 6  |-  0  e.  RR
12 0zd 9203 . . . . . . . 8  |-  ( T. 
->  0  e.  ZZ )
13 1zzd 9218 . . . . . . . 8  |-  ( T. 
->  1  e.  ZZ )
14 eqid 2165 . . . . . . . . . . 11  |-  0  =  0
1514orci 721 . . . . . . . . . 10  |-  ( 0  =  0  \/  -.  0  =  0 )
16 df-dc 825 . . . . . . . . . 10  |-  (DECID  0  =  0  <->  ( 0  =  0  \/  -.  0  =  0 ) )
1715, 16mpbir 145 . . . . . . . . 9  |- DECID  0  =  0
1817a1i 9 . . . . . . . 8  |-  ( T. 
-> DECID  0  =  0 )
1912, 13, 18ifcldcd 3555 . . . . . . 7  |-  ( T. 
->  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ )
2019mptru 1352 . . . . . 6  |-  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ
21 eqeq1 2172 . . . . . . . 8  |-  ( y  =  0  ->  (
y  =  0  <->  0  =  0 ) )
2221ifbid 3541 . . . . . . 7  |-  ( y  =  0  ->  if ( y  =  0 ,  0 ,  1 )  =  if ( 0  =  0 ,  0 ,  1 ) )
23 eqid 2165 . . . . . . 7  |-  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )
2422, 23fvmptg 5562 . . . . . 6  |-  ( ( 0  e.  RR  /\  if ( 0  =  0 ,  0 ,  1 )  e.  ZZ )  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0 )  =  if ( 0  =  0 ,  0 ,  1 ) )
2511, 20, 24mp2an 423 . . . . 5  |-  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
)  =  if ( 0  =  0 ,  0 ,  1 )
2614iftruei 3526 . . . . 5  |-  if ( 0  =  0 ,  0 ,  1 )  =  0
2725, 26eqtri 2186 . . . 4  |-  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
)  =  0
2827a1i 9 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0 )
29 1ne0 8925 . . . . . 6  |-  1  =/=  0
30 eqeq1 2172 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y  =  0  <->  z  =  0 ) )
3130ifbid 3541 . . . . . . . . 9  |-  ( y  =  z  ->  if ( y  =  0 ,  0 ,  1 )  =  if ( z  =  0 ,  0 ,  1 ) )
32 rpre 9596 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z  e.  RR )
3332adantl 275 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  z  e.  RR )
34 0zd 9203 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  0  e.  ZZ )
35 1zzd 9218 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  1  e.  ZZ )
36 eqeq1 2172 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  =  0  <->  z  =  0 ) )
3736dcbid 828 . . . . . . . . . . 11  |-  ( x  =  z  ->  (DECID  x  =  0  <-> DECID  z  =  0
) )
38 simpl 108 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  A. x  e.  RR DECID  x  =  0 )
3937, 38, 33rspcdva 2835 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  -> DECID  z  =  0
)
4034, 35, 39ifcldcd 3555 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  if ( z  =  0 ,  0 ,  1 )  e.  ZZ )
4123, 31, 33, 40fvmptd3 5579 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  if ( z  =  0 ,  0 ,  1 ) )
42 rpne0 9605 . . . . . . . . . . 11  |-  ( z  e.  RR+  ->  z  =/=  0 )
4342neneqd 2357 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  -.  z  =  0 )
4443iffalsed 3530 . . . . . . . . 9  |-  ( z  e.  RR+  ->  if ( z  =  0 ,  0 ,  1 )  =  1 )
4544adantl 275 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  if ( z  =  0 ,  0 ,  1 )  =  1 )
4641, 45eqtrd 2198 . . . . . . 7  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  1 )
4746neeq1d 2354 . . . . . 6  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0  <->  1  =/=  0
) )
4829, 47mpbiri 167 . . . . 5  |-  ( ( A. x  e.  RR DECID  x  =  0  /\  z  e.  RR+ )  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =/=  0 )
4948ralrimiva 2539 . . . 4  |-  ( A. x  e.  RR DECID  x  =  0  ->  A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0 )
50 fveq2 5486 . . . . . 6  |-  ( z  =  x  ->  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
) )
5150neeq1d 2354 . . . . 5  |-  ( z  =  x  ->  (
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 z )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
5251cbvralv 2692 . . . 4  |-  ( A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  z
)  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
)  =/=  0 )
5349, 52sylib 121 . . 3  |-  ( A. x  e.  RR DECID  x  =  0  ->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 x )  =/=  0 )
5410, 28, 533jca 1167 . 2  |-  ( A. x  e.  RR DECID  x  =  0  ->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
55 feq1 5320 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f : RR --> ZZ  <->  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ ) )
56 fveq1 5485 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f ` 
0 )  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0
) )
5756eqeq1d 2174 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f `
 0 )  =  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  0 )  =  0 ) )
58 fveq1 5485 . . . . 5  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( f `  x )  =  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
) )
5958neeq1d 2354 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f `
 x )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) )
6059ralbidv 2466 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( A. x  e.  RR+  ( f `  x )  =/=  0  <->  A. x  e.  RR+  (
( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x
)  =/=  0 ) )
6155, 57, 603anbi123d 1302 . 2  |-  ( f  =  ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) )  ->  ( ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 )  <-> 
( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `
 0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y  =  0 ,  0 ,  1 ) ) `  x )  =/=  0 ) ) )
623, 54, 61elabd 2871 1  |-  ( A. x  e.  RR DECID  x  =  0  ->  E. f ( f : RR --> ZZ  /\  ( f `  0
)  =  0  /\ 
A. x  e.  RR+  ( f `  x
)  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343   T. wtru 1344   E.wex 1480    e. wcel 2136    =/= wne 2336   A.wral 2444   _Vcvv 2726   ifcif 3520    |-> cmpt 4043   -->wf 5184   ` cfv 5188   RRcr 7752   0cc0 7753   1c1 7754   ZZcz 9191   RR+crp 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-z 9192  df-rp 9590
This theorem is referenced by:  dcapnconstALT  13940
  Copyright terms: Public domain W3C validator