Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > dceqnconst | Unicode version |
Description: Decidability of real number equality implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See redcwlpo 13934 for more discussion of decidability of real number equality. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) (Revised by Jim Kingdon, 23-Jul-2024.) |
Ref | Expression |
---|---|
dceqnconst | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 7887 | . . . 4 | |
2 | 1 | mptex 5711 | . . 3 |
3 | 2 | a1i 9 | . 2 DECID |
4 | 0zd 9203 | . . . . 5 DECID | |
5 | 1zzd 9218 | . . . . 5 DECID | |
6 | eqeq1 2172 | . . . . . . 7 | |
7 | 6 | dcbid 828 | . . . . . 6 DECID DECID |
8 | 7 | rspccva 2829 | . . . . 5 DECID DECID |
9 | 4, 5, 8 | ifcldcd 3555 | . . . 4 DECID |
10 | 9 | fmpttd 5640 | . . 3 DECID |
11 | 0re 7899 | . . . . . 6 | |
12 | 0zd 9203 | . . . . . . . 8 | |
13 | 1zzd 9218 | . . . . . . . 8 | |
14 | eqid 2165 | . . . . . . . . . . 11 | |
15 | 14 | orci 721 | . . . . . . . . . 10 |
16 | df-dc 825 | . . . . . . . . . 10 DECID | |
17 | 15, 16 | mpbir 145 | . . . . . . . . 9 DECID |
18 | 17 | a1i 9 | . . . . . . . 8 DECID |
19 | 12, 13, 18 | ifcldcd 3555 | . . . . . . 7 |
20 | 19 | mptru 1352 | . . . . . 6 |
21 | eqeq1 2172 | . . . . . . . 8 | |
22 | 21 | ifbid 3541 | . . . . . . 7 |
23 | eqid 2165 | . . . . . . 7 | |
24 | 22, 23 | fvmptg 5562 | . . . . . 6 |
25 | 11, 20, 24 | mp2an 423 | . . . . 5 |
26 | 14 | iftruei 3526 | . . . . 5 |
27 | 25, 26 | eqtri 2186 | . . . 4 |
28 | 27 | a1i 9 | . . 3 DECID |
29 | 1ne0 8925 | . . . . . 6 | |
30 | eqeq1 2172 | . . . . . . . . . 10 | |
31 | 30 | ifbid 3541 | . . . . . . . . 9 |
32 | rpre 9596 | . . . . . . . . . 10 | |
33 | 32 | adantl 275 | . . . . . . . . 9 DECID |
34 | 0zd 9203 | . . . . . . . . . 10 DECID | |
35 | 1zzd 9218 | . . . . . . . . . 10 DECID | |
36 | eqeq1 2172 | . . . . . . . . . . . 12 | |
37 | 36 | dcbid 828 | . . . . . . . . . . 11 DECID DECID |
38 | simpl 108 | . . . . . . . . . . 11 DECID DECID | |
39 | 37, 38, 33 | rspcdva 2835 | . . . . . . . . . 10 DECID DECID |
40 | 34, 35, 39 | ifcldcd 3555 | . . . . . . . . 9 DECID |
41 | 23, 31, 33, 40 | fvmptd3 5579 | . . . . . . . 8 DECID |
42 | rpne0 9605 | . . . . . . . . . . 11 | |
43 | 42 | neneqd 2357 | . . . . . . . . . 10 |
44 | 43 | iffalsed 3530 | . . . . . . . . 9 |
45 | 44 | adantl 275 | . . . . . . . 8 DECID |
46 | 41, 45 | eqtrd 2198 | . . . . . . 7 DECID |
47 | 46 | neeq1d 2354 | . . . . . 6 DECID |
48 | 29, 47 | mpbiri 167 | . . . . 5 DECID |
49 | 48 | ralrimiva 2539 | . . . 4 DECID |
50 | fveq2 5486 | . . . . . 6 | |
51 | 50 | neeq1d 2354 | . . . . 5 |
52 | 51 | cbvralv 2692 | . . . 4 |
53 | 49, 52 | sylib 121 | . . 3 DECID |
54 | 10, 28, 53 | 3jca 1167 | . 2 DECID |
55 | feq1 5320 | . . 3 | |
56 | fveq1 5485 | . . . 4 | |
57 | 56 | eqeq1d 2174 | . . 3 |
58 | fveq1 5485 | . . . . 5 | |
59 | 58 | neeq1d 2354 | . . . 4 |
60 | 59 | ralbidv 2466 | . . 3 |
61 | 55, 57, 60 | 3anbi123d 1302 | . 2 |
62 | 3, 54, 61 | elabd 2871 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 w3a 968 wceq 1343 wtru 1344 wex 1480 wcel 2136 wne 2336 wral 2444 cvv 2726 cif 3520 cmpt 4043 wf 5184 cfv 5188 cr 7752 cc0 7753 c1 7754 cz 9191 crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-z 9192 df-rp 9590 |
This theorem is referenced by: dcapnconstALT 13940 |
Copyright terms: Public domain | W3C validator |