| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabd | GIF version | ||
| Description: Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.) |
| Ref | Expression |
|---|---|
| elab.xex | ⊢ (𝜑 → 𝑋 ∈ V) |
| elab.xmaj | ⊢ (𝜑 → 𝜒) |
| elab.xsub | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elabd | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab.xex | . 2 ⊢ (𝜑 → 𝑋 ∈ V) | |
| 2 | elab.xmaj | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | elab.xsub | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 2871 | . 2 ⊢ (𝑋 ∈ V → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∃wex 1518 ∈ wcel 2180 Vcvv 2779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 |
| This theorem is referenced by: uchoice 6253 en2prd 6940 ntrivcvgap0 12026 ssomct 12982 dom1o 16266 dceqnconst 16339 dcapnconst 16340 |
| Copyright terms: Public domain | W3C validator |