| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabd | GIF version | ||
| Description: Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.) |
| Ref | Expression |
|---|---|
| elab.xex | ⊢ (𝜑 → 𝑋 ∈ V) |
| elab.xmaj | ⊢ (𝜑 → 𝜒) |
| elab.xsub | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| elabd | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab.xex | . 2 ⊢ (𝜑 → 𝑋 ∈ V) | |
| 2 | elab.xmaj | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | elab.xsub | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | spcegv 2862 | . 2 ⊢ (𝑋 ∈ V → (𝜒 → ∃𝑥𝜓)) |
| 5 | 1, 2, 4 | sylc 62 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 |
| This theorem is referenced by: uchoice 6230 en2prd 6916 ntrivcvgap0 11904 ssomct 12860 dceqnconst 16073 dcapnconst 16074 |
| Copyright terms: Public domain | W3C validator |