ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabd GIF version

Theorem elabd 2871
Description: Explicit demonstration the class {𝑥𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
elab.xex (𝜑𝑋 ∈ V)
elab.xmaj (𝜑𝜒)
elab.xsub (𝑥 = 𝑋 → (𝜓𝜒))
Assertion
Ref Expression
elabd (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝜒,𝑥   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabd
StepHypRef Expression
1 elab.xex . 2 (𝜑𝑋 ∈ V)
2 elab.xmaj . 2 (𝜑𝜒)
3 elab.xsub . . 3 (𝑥 = 𝑋 → (𝜓𝜒))
43spcegv 2814 . 2 (𝑋 ∈ V → (𝜒 → ∃𝑥𝜓))
51, 2, 4sylc 62 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  ntrivcvgap0  11490  ssomct  12378  dceqnconst  13938  dcapnconst  13939
  Copyright terms: Public domain W3C validator