ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabd GIF version

Theorem elabd 2905
Description: Explicit demonstration the class {𝑥𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.)
Hypotheses
Ref Expression
elab.xex (𝜑𝑋 ∈ V)
elab.xmaj (𝜑𝜒)
elab.xsub (𝑥 = 𝑋 → (𝜓𝜒))
Assertion
Ref Expression
elabd (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝜒,𝑥   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabd
StepHypRef Expression
1 elab.xex . 2 (𝜑𝑋 ∈ V)
2 elab.xmaj . 2 (𝜑𝜒)
3 elab.xsub . . 3 (𝑥 = 𝑋 → (𝜓𝜒))
43spcegv 2848 . 2 (𝑋 ∈ V → (𝜒 → ∃𝑥𝜓))
51, 2, 4sylc 62 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  uchoice  6190  ntrivcvgap0  11692  ssomct  12602  dceqnconst  15550  dcapnconst  15551
  Copyright terms: Public domain W3C validator