ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssomct Unicode version

Theorem ssomct 12605
Description: A decidable subset of  om is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
Assertion
Ref Expression
ssomct  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, x

Proof of Theorem ssomct
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 omex 4626 . . . . 5  |-  om  e.  _V
21ssex 4167 . . . 4  |-  ( A 
C_  om  ->  A  e. 
_V )
32adantr 276 . . 3  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A  e.  _V )
4 simpl 109 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A  C_  om )
5 resiexg 4988 . . . . . . 7  |-  ( A  e.  _V  ->  (  _I  |`  A )  e. 
_V )
62, 5syl 14 . . . . . 6  |-  ( A 
C_  om  ->  (  _I  |`  A )  e.  _V )
76adantr 276 . . . . 5  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  (  _I  |`  A )  e.  _V )
8 f1oi 5539 . . . . . 6  |-  (  _I  |`  A ) : A -1-1-onto-> A
9 f1ofo 5508 . . . . . 6  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  ->  (  _I  |`  A ) : A -onto-> A )
108, 9mp1i 10 . . . . 5  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  (  _I  |`  A ) : A -onto-> A )
11 foeq1 5473 . . . . 5  |-  ( f  =  (  _I  |`  A )  ->  ( f : A -onto-> A  <->  (  _I  |`  A ) : A -onto-> A ) )
127, 10, 11elabd 2906 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : A -onto-> A
)
13 simpr 110 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A. x  e.  om DECID  x  e.  A )
144, 12, 133jca 1179 . . 3  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  ( A  C_ 
om  /\  E. f 
f : A -onto-> A  /\  A. x  e.  om DECID  x  e.  A ) )
15 sseq1 3203 . . . 4  |-  ( y  =  A  ->  (
y  C_  om  <->  A  C_  om )
)
16 foeq2 5474 . . . . 5  |-  ( y  =  A  ->  (
f : y -onto-> A  <-> 
f : A -onto-> A
) )
1716exbidv 1836 . . . 4  |-  ( y  =  A  ->  ( E. f  f :
y -onto-> A  <->  E. f  f : A -onto-> A ) )
18 eleq2 2257 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
1918dcbid 839 . . . . 5  |-  ( y  =  A  ->  (DECID  x  e.  y  <-> DECID  x  e.  A )
)
2019ralbidv 2494 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  om DECID  x  e.  y  <->  A. x  e.  om DECID  x  e.  A ) )
2115, 17, 203anbi123d 1323 . . 3  |-  ( y  =  A  ->  (
( y  C_  om  /\  E. f  f : y
-onto-> A  /\  A. x  e.  om DECID  x  e.  y )  <-> 
( A  C_  om  /\  E. f  f : A -onto-> A  /\  A. x  e. 
om DECID 
x  e.  A ) ) )
223, 14, 21elabd 2906 . 2  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. y
( y  C_  om  /\  E. f  f : y
-onto-> A  /\  A. x  e.  om DECID  x  e.  y ) )
23 ctssdc 7174 . 2  |-  ( E. y ( y  C_  om 
/\  E. f  f : y -onto-> A  /\  A. x  e.  om DECID  x  e.  y )  <->  E. f  f : om -onto-> ( A 1o ) )
2422, 23sylib 122 1  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3154    _I cid 4320   omcom 4623    |` cres 4662   -onto->wfo 5253   -1-1-onto->wf1o 5254   1oc1o 6464   ⊔ cdju 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  ssnnctlemct  12606
  Copyright terms: Public domain W3C validator