ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssomct Unicode version

Theorem ssomct 12849
Description: A decidable subset of  om is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
Assertion
Ref Expression
ssomct  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, x

Proof of Theorem ssomct
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 omex 4642 . . . . 5  |-  om  e.  _V
21ssex 4182 . . . 4  |-  ( A 
C_  om  ->  A  e. 
_V )
32adantr 276 . . 3  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A  e.  _V )
4 simpl 109 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A  C_  om )
5 resiexg 5005 . . . . . . 7  |-  ( A  e.  _V  ->  (  _I  |`  A )  e. 
_V )
62, 5syl 14 . . . . . 6  |-  ( A 
C_  om  ->  (  _I  |`  A )  e.  _V )
76adantr 276 . . . . 5  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  (  _I  |`  A )  e.  _V )
8 f1oi 5562 . . . . . 6  |-  (  _I  |`  A ) : A -1-1-onto-> A
9 f1ofo 5531 . . . . . 6  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  ->  (  _I  |`  A ) : A -onto-> A )
108, 9mp1i 10 . . . . 5  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  (  _I  |`  A ) : A -onto-> A )
11 foeq1 5496 . . . . 5  |-  ( f  =  (  _I  |`  A )  ->  ( f : A -onto-> A  <->  (  _I  |`  A ) : A -onto-> A ) )
127, 10, 11elabd 2918 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : A -onto-> A
)
13 simpr 110 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A. x  e.  om DECID  x  e.  A )
144, 12, 133jca 1180 . . 3  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  ( A  C_ 
om  /\  E. f 
f : A -onto-> A  /\  A. x  e.  om DECID  x  e.  A ) )
15 sseq1 3216 . . . 4  |-  ( y  =  A  ->  (
y  C_  om  <->  A  C_  om )
)
16 foeq2 5497 . . . . 5  |-  ( y  =  A  ->  (
f : y -onto-> A  <-> 
f : A -onto-> A
) )
1716exbidv 1848 . . . 4  |-  ( y  =  A  ->  ( E. f  f :
y -onto-> A  <->  E. f  f : A -onto-> A ) )
18 eleq2 2269 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
1918dcbid 840 . . . . 5  |-  ( y  =  A  ->  (DECID  x  e.  y  <-> DECID  x  e.  A )
)
2019ralbidv 2506 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  om DECID  x  e.  y  <->  A. x  e.  om DECID  x  e.  A ) )
2115, 17, 203anbi123d 1325 . . 3  |-  ( y  =  A  ->  (
( y  C_  om  /\  E. f  f : y
-onto-> A  /\  A. x  e.  om DECID  x  e.  y )  <-> 
( A  C_  om  /\  E. f  f : A -onto-> A  /\  A. x  e. 
om DECID 
x  e.  A ) ) )
223, 14, 21elabd 2918 . 2  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. y
( y  C_  om  /\  E. f  f : y
-onto-> A  /\  A. x  e.  om DECID  x  e.  y ) )
23 ctssdc 7217 . 2  |-  ( E. y ( y  C_  om 
/\  E. f  f : y -onto-> A  /\  A. x  e.  om DECID  x  e.  y )  <->  E. f  f : om -onto-> ( A 1o ) )
2422, 23sylib 122 1  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166    _I cid 4336   omcom 4639    |` cres 4678   -onto->wfo 5270   -1-1-onto->wf1o 5271   1oc1o 6497   ⊔ cdju 7141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-dju 7142  df-inl 7151  df-inr 7152  df-case 7188
This theorem is referenced by:  ssnnctlemct  12850
  Copyright terms: Public domain W3C validator