ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssomct Unicode version

Theorem ssomct 12931
Description: A decidable subset of  om is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
Assertion
Ref Expression
ssomct  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, x

Proof of Theorem ssomct
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 omex 4659 . . . . 5  |-  om  e.  _V
21ssex 4197 . . . 4  |-  ( A 
C_  om  ->  A  e. 
_V )
32adantr 276 . . 3  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A  e.  _V )
4 simpl 109 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A  C_  om )
5 resiexg 5023 . . . . . . 7  |-  ( A  e.  _V  ->  (  _I  |`  A )  e. 
_V )
62, 5syl 14 . . . . . 6  |-  ( A 
C_  om  ->  (  _I  |`  A )  e.  _V )
76adantr 276 . . . . 5  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  (  _I  |`  A )  e.  _V )
8 f1oi 5583 . . . . . 6  |-  (  _I  |`  A ) : A -1-1-onto-> A
9 f1ofo 5551 . . . . . 6  |-  ( (  _I  |`  A ) : A -1-1-onto-> A  ->  (  _I  |`  A ) : A -onto-> A )
108, 9mp1i 10 . . . . 5  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  (  _I  |`  A ) : A -onto-> A )
11 foeq1 5516 . . . . 5  |-  ( f  =  (  _I  |`  A )  ->  ( f : A -onto-> A  <->  (  _I  |`  A ) : A -onto-> A ) )
127, 10, 11elabd 2925 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : A -onto-> A
)
13 simpr 110 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  A. x  e.  om DECID  x  e.  A )
144, 12, 133jca 1180 . . 3  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  ( A  C_ 
om  /\  E. f 
f : A -onto-> A  /\  A. x  e.  om DECID  x  e.  A ) )
15 sseq1 3224 . . . 4  |-  ( y  =  A  ->  (
y  C_  om  <->  A  C_  om )
)
16 foeq2 5517 . . . . 5  |-  ( y  =  A  ->  (
f : y -onto-> A  <-> 
f : A -onto-> A
) )
1716exbidv 1849 . . . 4  |-  ( y  =  A  ->  ( E. f  f :
y -onto-> A  <->  E. f  f : A -onto-> A ) )
18 eleq2 2271 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
1918dcbid 840 . . . . 5  |-  ( y  =  A  ->  (DECID  x  e.  y  <-> DECID  x  e.  A )
)
2019ralbidv 2508 . . . 4  |-  ( y  =  A  ->  ( A. x  e.  om DECID  x  e.  y  <->  A. x  e.  om DECID  x  e.  A ) )
2115, 17, 203anbi123d 1325 . . 3  |-  ( y  =  A  ->  (
( y  C_  om  /\  E. f  f : y
-onto-> A  /\  A. x  e.  om DECID  x  e.  y )  <-> 
( A  C_  om  /\  E. f  f : A -onto-> A  /\  A. x  e. 
om DECID 
x  e.  A ) ) )
223, 14, 21elabd 2925 . 2  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. y
( y  C_  om  /\  E. f  f : y
-onto-> A  /\  A. x  e.  om DECID  x  e.  y ) )
23 ctssdc 7241 . 2  |-  ( E. y ( y  C_  om 
/\  E. f  f : y -onto-> A  /\  A. x  e.  om DECID  x  e.  y )  <->  E. f  f : om -onto-> ( A 1o ) )
2422, 23sylib 122 1  |-  ( ( A  C_  om  /\  A. x  e.  om DECID  x  e.  A
)  ->  E. f 
f : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   _Vcvv 2776    C_ wss 3174    _I cid 4353   omcom 4656    |` cres 4695   -onto->wfo 5288   -1-1-onto->wf1o 5289   1oc1o 6518   ⊔ cdju 7165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176  df-case 7212
This theorem is referenced by:  ssnnctlemct  12932
  Copyright terms: Public domain W3C validator