Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ntrivcvgap0 | Unicode version |
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
Ref | Expression |
---|---|
ntrivcvgn0.1 | |
ntrivcvgn0.2 | |
ntrivcvgn0.3 | |
ntrivcvgap0.4 | # |
Ref | Expression |
---|---|
ntrivcvgap0 | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrivcvgn0.2 | . . . 4 | |
2 | uzid 9501 | . . . 4 | |
3 | 1, 2 | syl 14 | . . 3 |
4 | ntrivcvgn0.1 | . . 3 | |
5 | 3, 4 | eleqtrrdi 2264 | . 2 |
6 | ntrivcvgn0.3 | . . . 4 | |
7 | climrel 11243 | . . . . 5 | |
8 | 7 | brrelex2i 4655 | . . . 4 |
9 | 6, 8 | syl 14 | . . 3 |
10 | ntrivcvgap0.4 | . . . 4 # | |
11 | 10, 6 | jca 304 | . . 3 # |
12 | breq1 3992 | . . . 4 # # | |
13 | breq2 3993 | . . . 4 | |
14 | 12, 13 | anbi12d 470 | . . 3 # # |
15 | 9, 11, 14 | elabd 2875 | . 2 # |
16 | seqeq1 10404 | . . . . . 6 | |
17 | 16 | breq1d 3999 | . . . . 5 |
18 | 17 | anbi2d 461 | . . . 4 # # |
19 | 18 | exbidv 1818 | . . 3 # # |
20 | 19 | rspcev 2834 | . 2 # # |
21 | 5, 15, 20 | syl2anc 409 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 wrex 2449 cvv 2730 class class class wbr 3989 cfv 5198 cc0 7774 cmul 7779 # cap 8500 cz 9212 cuz 9487 cseq 10401 cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-neg 8093 df-z 9213 df-uz 9488 df-seqfrec 10402 df-clim 11242 |
This theorem is referenced by: zprodap0 11544 |
Copyright terms: Public domain | W3C validator |