ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap0 Unicode version

Theorem ntrivcvgap0 11860
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgn0.2  |-  ( ph  ->  M  e.  ZZ )
ntrivcvgn0.3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
ntrivcvgap0.4  |-  ( ph  ->  X #  0 )
Assertion
Ref Expression
ntrivcvgap0  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
Distinct variable groups:    n, F, y   
n, M, y    y, X    n, Z
Allowed substitution hints:    ph( y, n)    X( n)    Z( y)

Proof of Theorem ntrivcvgap0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 uzid 9662 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 14 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 ntrivcvgn0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrrdi 2299 . 2  |-  ( ph  ->  M  e.  Z )
6 ntrivcvgn0.3 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
7 climrel 11591 . . . . 5  |-  Rel  ~~>
87brrelex2i 4719 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  X  ->  X  e.  _V )
96, 8syl 14 . . 3  |-  ( ph  ->  X  e.  _V )
10 ntrivcvgap0.4 . . . 4  |-  ( ph  ->  X #  0 )
1110, 6jca 306 . . 3  |-  ( ph  ->  ( X #  0  /\ 
seq M (  x.  ,  F )  ~~>  X ) )
12 breq1 4047 . . . 4  |-  ( y  =  X  ->  (
y #  0  <->  X #  0
) )
13 breq2 4048 . . . 4  |-  ( y  =  X  ->  (  seq M (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  X ) )
1412, 13anbi12d 473 . . 3  |-  ( y  =  X  ->  (
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y )  <-> 
( X #  0  /\ 
seq M (  x.  ,  F )  ~~>  X ) ) )
159, 11, 14elabd 2918 . 2  |-  ( ph  ->  E. y ( y #  0  /\  seq M
(  x.  ,  F
)  ~~>  y ) )
16 seqeq1 10595 . . . . . 6  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
1716breq1d 4054 . . . . 5  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
1817anbi2d 464 . . . 4  |-  ( n  =  M  ->  (
( y #  0  /\ 
seq n (  x.  ,  F )  ~~>  y )  <-> 
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y ) ) )
1918exbidv 1848 . . 3  |-  ( n  =  M  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  <->  E. y
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y ) ) )
2019rspcev 2877 . 2  |-  ( ( M  e.  Z  /\  E. y ( y #  0  /\  seq M (  x.  ,  F )  ~~>  y ) )  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
215, 15, 20syl2anc 411 1  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   E.wrex 2485   _Vcvv 2772   class class class wbr 4044   ` cfv 5271   0cc0 7925    x. cmul 7930   # cap 8654   ZZcz 9372   ZZ>=cuz 9648    seqcseq 10592    ~~> cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-neg 8246  df-z 9373  df-uz 9649  df-seqfrec 10593  df-clim 11590
This theorem is referenced by:  zprodap0  11892
  Copyright terms: Public domain W3C validator