ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap0 Unicode version

Theorem ntrivcvgap0 12055
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgn0.2  |-  ( ph  ->  M  e.  ZZ )
ntrivcvgn0.3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
ntrivcvgap0.4  |-  ( ph  ->  X #  0 )
Assertion
Ref Expression
ntrivcvgap0  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
Distinct variable groups:    n, F, y   
n, M, y    y, X    n, Z
Allowed substitution hints:    ph( y, n)    X( n)    Z( y)

Proof of Theorem ntrivcvgap0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 uzid 9732 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 14 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 ntrivcvgn0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrrdi 2323 . 2  |-  ( ph  ->  M  e.  Z )
6 ntrivcvgn0.3 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
7 climrel 11786 . . . . 5  |-  Rel  ~~>
87brrelex2i 4762 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  X  ->  X  e.  _V )
96, 8syl 14 . . 3  |-  ( ph  ->  X  e.  _V )
10 ntrivcvgap0.4 . . . 4  |-  ( ph  ->  X #  0 )
1110, 6jca 306 . . 3  |-  ( ph  ->  ( X #  0  /\ 
seq M (  x.  ,  F )  ~~>  X ) )
12 breq1 4085 . . . 4  |-  ( y  =  X  ->  (
y #  0  <->  X #  0
) )
13 breq2 4086 . . . 4  |-  ( y  =  X  ->  (  seq M (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  X ) )
1412, 13anbi12d 473 . . 3  |-  ( y  =  X  ->  (
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y )  <-> 
( X #  0  /\ 
seq M (  x.  ,  F )  ~~>  X ) ) )
159, 11, 14elabd 2948 . 2  |-  ( ph  ->  E. y ( y #  0  /\  seq M
(  x.  ,  F
)  ~~>  y ) )
16 seqeq1 10667 . . . . . 6  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
1716breq1d 4092 . . . . 5  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
1817anbi2d 464 . . . 4  |-  ( n  =  M  ->  (
( y #  0  /\ 
seq n (  x.  ,  F )  ~~>  y )  <-> 
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y ) ) )
1918exbidv 1871 . . 3  |-  ( n  =  M  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  <->  E. y
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y ) ) )
2019rspcev 2907 . 2  |-  ( ( M  e.  Z  /\  E. y ( y #  0  /\  seq M (  x.  ,  F )  ~~>  y ) )  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
215, 15, 20syl2anc 411 1  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   _Vcvv 2799   class class class wbr 4082   ` cfv 5317   0cc0 7995    x. cmul 8000   # cap 8724   ZZcz 9442   ZZ>=cuz 9718    seqcseq 10664    ~~> cli 11784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-neg 8316  df-z 9443  df-uz 9719  df-seqfrec 10665  df-clim 11785
This theorem is referenced by:  zprodap0  12087
  Copyright terms: Public domain W3C validator