ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap0 Unicode version

Theorem ntrivcvgap0 11831
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgn0.2  |-  ( ph  ->  M  e.  ZZ )
ntrivcvgn0.3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
ntrivcvgap0.4  |-  ( ph  ->  X #  0 )
Assertion
Ref Expression
ntrivcvgap0  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
Distinct variable groups:    n, F, y   
n, M, y    y, X    n, Z
Allowed substitution hints:    ph( y, n)    X( n)    Z( y)

Proof of Theorem ntrivcvgap0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 uzid 9661 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 14 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 ntrivcvgn0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrrdi 2298 . 2  |-  ( ph  ->  M  e.  Z )
6 ntrivcvgn0.3 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
7 climrel 11562 . . . . 5  |-  Rel  ~~>
87brrelex2i 4718 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  X  ->  X  e.  _V )
96, 8syl 14 . . 3  |-  ( ph  ->  X  e.  _V )
10 ntrivcvgap0.4 . . . 4  |-  ( ph  ->  X #  0 )
1110, 6jca 306 . . 3  |-  ( ph  ->  ( X #  0  /\ 
seq M (  x.  ,  F )  ~~>  X ) )
12 breq1 4046 . . . 4  |-  ( y  =  X  ->  (
y #  0  <->  X #  0
) )
13 breq2 4047 . . . 4  |-  ( y  =  X  ->  (  seq M (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  X ) )
1412, 13anbi12d 473 . . 3  |-  ( y  =  X  ->  (
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y )  <-> 
( X #  0  /\ 
seq M (  x.  ,  F )  ~~>  X ) ) )
159, 11, 14elabd 2917 . 2  |-  ( ph  ->  E. y ( y #  0  /\  seq M
(  x.  ,  F
)  ~~>  y ) )
16 seqeq1 10593 . . . . . 6  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
1716breq1d 4053 . . . . 5  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
1817anbi2d 464 . . . 4  |-  ( n  =  M  ->  (
( y #  0  /\ 
seq n (  x.  ,  F )  ~~>  y )  <-> 
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y ) ) )
1918exbidv 1847 . . 3  |-  ( n  =  M  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  <->  E. y
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y ) ) )
2019rspcev 2876 . 2  |-  ( ( M  e.  Z  /\  E. y ( y #  0  /\  seq M (  x.  ,  F )  ~~>  y ) )  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
215, 15, 20syl2anc 411 1  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   E.wrex 2484   _Vcvv 2771   class class class wbr 4043   ` cfv 5270   0cc0 7924    x. cmul 7929   # cap 8653   ZZcz 9371   ZZ>=cuz 9647    seqcseq 10590    ~~> cli 11560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-ltirr 8036
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-neg 8245  df-z 9372  df-uz 9648  df-seqfrec 10591  df-clim 11561
This theorem is referenced by:  zprodap0  11863
  Copyright terms: Public domain W3C validator