ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap0 Unicode version

Theorem ntrivcvgap0 11512
Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgn0.1  |-  Z  =  ( ZZ>= `  M )
ntrivcvgn0.2  |-  ( ph  ->  M  e.  ZZ )
ntrivcvgn0.3  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
ntrivcvgap0.4  |-  ( ph  ->  X #  0 )
Assertion
Ref Expression
ntrivcvgap0  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
Distinct variable groups:    n, F, y   
n, M, y    y, X    n, Z
Allowed substitution hints:    ph( y, n)    X( n)    Z( y)

Proof of Theorem ntrivcvgap0
StepHypRef Expression
1 ntrivcvgn0.2 . . . 4  |-  ( ph  ->  M  e.  ZZ )
2 uzid 9501 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 14 . . 3  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 ntrivcvgn0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrrdi 2264 . 2  |-  ( ph  ->  M  e.  Z )
6 ntrivcvgn0.3 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
7 climrel 11243 . . . . 5  |-  Rel  ~~>
87brrelex2i 4655 . . . 4  |-  (  seq M (  x.  ,  F )  ~~>  X  ->  X  e.  _V )
96, 8syl 14 . . 3  |-  ( ph  ->  X  e.  _V )
10 ntrivcvgap0.4 . . . 4  |-  ( ph  ->  X #  0 )
1110, 6jca 304 . . 3  |-  ( ph  ->  ( X #  0  /\ 
seq M (  x.  ,  F )  ~~>  X ) )
12 breq1 3992 . . . 4  |-  ( y  =  X  ->  (
y #  0  <->  X #  0
) )
13 breq2 3993 . . . 4  |-  ( y  =  X  ->  (  seq M (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  X ) )
1412, 13anbi12d 470 . . 3  |-  ( y  =  X  ->  (
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y )  <-> 
( X #  0  /\ 
seq M (  x.  ,  F )  ~~>  X ) ) )
159, 11, 14elabd 2875 . 2  |-  ( ph  ->  E. y ( y #  0  /\  seq M
(  x.  ,  F
)  ~~>  y ) )
16 seqeq1 10404 . . . . . 6  |-  ( n  =  M  ->  seq n (  x.  ,  F )  =  seq M (  x.  ,  F ) )
1716breq1d 3999 . . . . 5  |-  ( n  =  M  ->  (  seq n (  x.  ,  F )  ~~>  y  <->  seq M (  x.  ,  F )  ~~>  y ) )
1817anbi2d 461 . . . 4  |-  ( n  =  M  ->  (
( y #  0  /\ 
seq n (  x.  ,  F )  ~~>  y )  <-> 
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y ) ) )
1918exbidv 1818 . . 3  |-  ( n  =  M  ->  ( E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  <->  E. y
( y #  0  /\ 
seq M (  x.  ,  F )  ~~>  y ) ) )
2019rspcev 2834 . 2  |-  ( ( M  e.  Z  /\  E. y ( y #  0  /\  seq M (  x.  ,  F )  ~~>  y ) )  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
215, 15, 20syl2anc 409 1  |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   _Vcvv 2730   class class class wbr 3989   ` cfv 5198   0cc0 7774    x. cmul 7779   # cap 8500   ZZcz 9212   ZZ>=cuz 9487    seqcseq 10401    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-neg 8093  df-z 9213  df-uz 9488  df-seqfrec 10402  df-clim 11242
This theorem is referenced by:  zprodap0  11544
  Copyright terms: Public domain W3C validator