| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrivcvgap0 | Unicode version | ||
| Description: A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.) |
| Ref | Expression |
|---|---|
| ntrivcvgn0.1 |
|
| ntrivcvgn0.2 |
|
| ntrivcvgn0.3 |
|
| ntrivcvgap0.4 |
|
| Ref | Expression |
|---|---|
| ntrivcvgap0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrivcvgn0.2 |
. . . 4
| |
| 2 | uzid 9661 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | ntrivcvgn0.1 |
. . 3
| |
| 5 | 3, 4 | eleqtrrdi 2298 |
. 2
|
| 6 | ntrivcvgn0.3 |
. . . 4
| |
| 7 | climrel 11562 |
. . . . 5
| |
| 8 | 7 | brrelex2i 4718 |
. . . 4
|
| 9 | 6, 8 | syl 14 |
. . 3
|
| 10 | ntrivcvgap0.4 |
. . . 4
| |
| 11 | 10, 6 | jca 306 |
. . 3
|
| 12 | breq1 4046 |
. . . 4
| |
| 13 | breq2 4047 |
. . . 4
| |
| 14 | 12, 13 | anbi12d 473 |
. . 3
|
| 15 | 9, 11, 14 | elabd 2917 |
. 2
|
| 16 | seqeq1 10593 |
. . . . . 6
| |
| 17 | 16 | breq1d 4053 |
. . . . 5
|
| 18 | 17 | anbi2d 464 |
. . . 4
|
| 19 | 18 | exbidv 1847 |
. . 3
|
| 20 | 19 | rspcev 2876 |
. 2
|
| 21 | 5, 15, 20 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-pre-ltirr 8036 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-neg 8245 df-z 9372 df-uz 9648 df-seqfrec 10591 df-clim 11561 |
| This theorem is referenced by: zprodap0 11863 |
| Copyright terms: Public domain | W3C validator |