| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | Unicode version | ||
| Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4636 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4636, finds2 4637, finds1 4638. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| bj-bdfindis.bd | 
 | 
| bj-bdfindis.nf0 | 
 | 
| bj-bdfindis.nf1 | 
 | 
| bj-bdfindis.nfsuc | 
 | 
| bj-bdfindis.0 | 
 | 
| bj-bdfindis.1 | 
 | 
| bj-bdfindis.suc | 
 | 
| Ref | Expression | 
|---|---|
| bj-bdfindis | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-bdfindis.nf0 | 
. . . 4
 | |
| 2 | 0ex 4160 | 
. . . 4
 | |
| 3 | bj-bdfindis.0 | 
. . . 4
 | |
| 4 | 1, 2, 3 | elabf2 15428 | 
. . 3
 | 
| 5 | bj-bdfindis.nf1 | 
. . . . . 6
 | |
| 6 | bj-bdfindis.1 | 
. . . . . 6
 | |
| 7 | 5, 6 | elabf1 15427 | 
. . . . 5
 | 
| 8 | bj-bdfindis.nfsuc | 
. . . . . 6
 | |
| 9 | vex 2766 | 
. . . . . . 7
 | |
| 10 | 9 | bj-sucex 15569 | 
. . . . . 6
 | 
| 11 | bj-bdfindis.suc | 
. . . . . 6
 | |
| 12 | 8, 10, 11 | elabf2 15428 | 
. . . . 5
 | 
| 13 | 7, 12 | imim12i 59 | 
. . . 4
 | 
| 14 | 13 | ralimi 2560 | 
. . 3
 | 
| 15 | bj-bdfindis.bd | 
. . . . 5
 | |
| 16 | 15 | bdcab 15495 | 
. . . 4
 | 
| 17 | 16 | bdpeano5 15589 | 
. . 3
 | 
| 18 | 4, 14, 17 | syl2an 289 | 
. 2
 | 
| 19 | ssabral 3254 | 
. 2
 | |
| 20 | 18, 19 | sylib 122 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdor 15462 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 ax-infvn 15587 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-bdc 15487 df-bj-ind 15573 | 
| This theorem is referenced by: bj-bdfindisg 15594 bj-bdfindes 15595 bj-nn0suc0 15596 | 
| Copyright terms: Public domain | W3C validator |