| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | Unicode version | ||
| Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4649 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4649, finds2 4650, finds1 4651. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-bdfindis.bd |
|
| bj-bdfindis.nf0 |
|
| bj-bdfindis.nf1 |
|
| bj-bdfindis.nfsuc |
|
| bj-bdfindis.0 |
|
| bj-bdfindis.1 |
|
| bj-bdfindis.suc |
|
| Ref | Expression |
|---|---|
| bj-bdfindis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bdfindis.nf0 |
. . . 4
| |
| 2 | 0ex 4172 |
. . . 4
| |
| 3 | bj-bdfindis.0 |
. . . 4
| |
| 4 | 1, 2, 3 | elabf2 15755 |
. . 3
|
| 5 | bj-bdfindis.nf1 |
. . . . . 6
| |
| 6 | bj-bdfindis.1 |
. . . . . 6
| |
| 7 | 5, 6 | elabf1 15754 |
. . . . 5
|
| 8 | bj-bdfindis.nfsuc |
. . . . . 6
| |
| 9 | vex 2775 |
. . . . . . 7
| |
| 10 | 9 | bj-sucex 15896 |
. . . . . 6
|
| 11 | bj-bdfindis.suc |
. . . . . 6
| |
| 12 | 8, 10, 11 | elabf2 15755 |
. . . . 5
|
| 13 | 7, 12 | imim12i 59 |
. . . 4
|
| 14 | 13 | ralimi 2569 |
. . 3
|
| 15 | bj-bdfindis.bd |
. . . . 5
| |
| 16 | 15 | bdcab 15822 |
. . . 4
|
| 17 | 16 | bdpeano5 15916 |
. . 3
|
| 18 | 4, 14, 17 | syl2an 289 |
. 2
|
| 19 | ssabral 3264 |
. 2
| |
| 20 | 18, 19 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4171 ax-pr 4254 ax-un 4481 ax-bd0 15786 ax-bdor 15789 ax-bdex 15792 ax-bdeq 15793 ax-bdel 15794 ax-bdsb 15795 ax-bdsep 15857 ax-infvn 15914 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4419 df-iom 4640 df-bdc 15814 df-bj-ind 15900 |
| This theorem is referenced by: bj-bdfindisg 15921 bj-bdfindes 15922 bj-nn0suc0 15923 |
| Copyright terms: Public domain | W3C validator |