![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | Unicode version |
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4601 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4601, finds2 4602, finds1 4603. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd |
![]() ![]() |
bj-bdfindis.nf0 |
![]() ![]() ![]() ![]() |
bj-bdfindis.nf1 |
![]() ![]() ![]() ![]() |
bj-bdfindis.nfsuc |
![]() ![]() ![]() ![]() |
bj-bdfindis.0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindis.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindis.suc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bj-bdfindis |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.nf0 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 0ex 4132 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | bj-bdfindis.0 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | elabf2 14695 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | bj-bdfindis.nf1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
6 | bj-bdfindis.1 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | elabf1 14694 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | bj-bdfindis.nfsuc |
. . . . . 6
![]() ![]() ![]() ![]() | |
9 | vex 2742 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
10 | 9 | bj-sucex 14836 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
11 | bj-bdfindis.suc |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 8, 10, 11 | elabf2 14695 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 7, 12 | imim12i 59 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | ralimi 2540 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | bj-bdfindis.bd |
. . . . 5
![]() ![]() | |
16 | 15 | bdcab 14762 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16 | bdpeano5 14856 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 4, 14, 17 | syl2an 289 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | ssabral 3228 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 18, 19 | sylib 122 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-nul 4131 ax-pr 4211 ax-un 4435 ax-bd0 14726 ax-bdor 14729 ax-bdex 14732 ax-bdeq 14733 ax-bdel 14734 ax-bdsb 14735 ax-bdsep 14797 ax-infvn 14854 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 df-bdc 14754 df-bj-ind 14840 |
This theorem is referenced by: bj-bdfindisg 14861 bj-bdfindes 14862 bj-nn0suc0 14863 |
Copyright terms: Public domain | W3C validator |