Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindis Unicode version

Theorem bj-bdfindis 13460
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4553 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4553, finds2 4554, finds1 4555. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-bdfindis.bd  |- BOUNDED  ph
bj-bdfindis.nf0  |-  F/ x ps
bj-bdfindis.nf1  |-  F/ x ch
bj-bdfindis.nfsuc  |-  F/ x th
bj-bdfindis.0  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
bj-bdfindis.1  |-  ( x  =  y  ->  ( ph  ->  ch ) )
bj-bdfindis.suc  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
Assertion
Ref Expression
bj-bdfindis  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y)    th( x, y)

Proof of Theorem bj-bdfindis
StepHypRef Expression
1 bj-bdfindis.nf0 . . . 4  |-  F/ x ps
2 0ex 4087 . . . 4  |-  (/)  e.  _V
3 bj-bdfindis.0 . . . 4  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
41, 2, 3elabf2 13294 . . 3  |-  ( ps 
->  (/)  e.  { x  |  ph } )
5 bj-bdfindis.nf1 . . . . . 6  |-  F/ x ch
6 bj-bdfindis.1 . . . . . 6  |-  ( x  =  y  ->  ( ph  ->  ch ) )
75, 6elabf1 13293 . . . . 5  |-  ( y  e.  { x  | 
ph }  ->  ch )
8 bj-bdfindis.nfsuc . . . . . 6  |-  F/ x th
9 vex 2712 . . . . . . 7  |-  y  e. 
_V
109bj-sucex 13436 . . . . . 6  |-  suc  y  e.  _V
11 bj-bdfindis.suc . . . . . 6  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
128, 10, 11elabf2 13294 . . . . 5  |-  ( th 
->  suc  y  e.  {
x  |  ph }
)
137, 12imim12i 59 . . . 4  |-  ( ( ch  ->  th )  ->  ( y  e.  {
x  |  ph }  ->  suc  y  e.  {
x  |  ph }
) )
1413ralimi 2517 . . 3  |-  ( A. y  e.  om  ( ch  ->  th )  ->  A. y  e.  om  ( y  e. 
{ x  |  ph }  ->  suc  y  e.  { x  |  ph }
) )
15 bj-bdfindis.bd . . . . 5  |- BOUNDED  ph
1615bdcab 13362 . . . 4  |- BOUNDED  { x  |  ph }
1716bdpeano5 13456 . . 3  |-  ( (
(/)  e.  { x  |  ph }  /\  A. y  e.  om  (
y  e.  { x  |  ph }  ->  suc  y  e.  { x  |  ph } ) )  ->  om  C_  { x  |  ph } )
184, 14, 17syl2an 287 . 2  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  om  C_  { x  |  ph } )
19 ssabral 3195 . 2  |-  ( om  C_  { x  |  ph } 
<-> 
A. x  e.  om  ph )
2018, 19sylib 121 1  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332   F/wnf 1437    e. wcel 2125   {cab 2140   A.wral 2432    C_ wss 3098   (/)c0 3390   suc csuc 4320   omcom 4543  BOUNDED wbd 13325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-nul 4086  ax-pr 4164  ax-un 4388  ax-bd0 13326  ax-bdor 13329  ax-bdex 13332  ax-bdeq 13333  ax-bdel 13334  ax-bdsb 13335  ax-bdsep 13397  ax-infvn 13454
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-sn 3562  df-pr 3563  df-uni 3769  df-int 3804  df-suc 4326  df-iom 4544  df-bdc 13354  df-bj-ind 13440
This theorem is referenced by:  bj-bdfindisg  13461  bj-bdfindes  13462  bj-nn0suc0  13463
  Copyright terms: Public domain W3C validator