Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | Unicode version |
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4584 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4584, finds2 4585, finds1 4586. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd | BOUNDED |
bj-bdfindis.nf0 | |
bj-bdfindis.nf1 | |
bj-bdfindis.nfsuc | |
bj-bdfindis.0 | |
bj-bdfindis.1 | |
bj-bdfindis.suc |
Ref | Expression |
---|---|
bj-bdfindis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.nf0 | . . . 4 | |
2 | 0ex 4116 | . . . 4 | |
3 | bj-bdfindis.0 | . . . 4 | |
4 | 1, 2, 3 | elabf2 13817 | . . 3 |
5 | bj-bdfindis.nf1 | . . . . . 6 | |
6 | bj-bdfindis.1 | . . . . . 6 | |
7 | 5, 6 | elabf1 13816 | . . . . 5 |
8 | bj-bdfindis.nfsuc | . . . . . 6 | |
9 | vex 2733 | . . . . . . 7 | |
10 | 9 | bj-sucex 13958 | . . . . . 6 |
11 | bj-bdfindis.suc | . . . . . 6 | |
12 | 8, 10, 11 | elabf2 13817 | . . . . 5 |
13 | 7, 12 | imim12i 59 | . . . 4 |
14 | 13 | ralimi 2533 | . . 3 |
15 | bj-bdfindis.bd | . . . . 5 BOUNDED | |
16 | 15 | bdcab 13884 | . . . 4 BOUNDED |
17 | 16 | bdpeano5 13978 | . . 3 |
18 | 4, 14, 17 | syl2an 287 | . 2 |
19 | ssabral 3218 | . 2 | |
20 | 18, 19 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wnf 1453 wcel 2141 cab 2156 wral 2448 wss 3121 c0 3414 csuc 4350 com 4574 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdor 13851 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bj-bdfindisg 13983 bj-bdfindes 13984 bj-nn0suc0 13985 |
Copyright terms: Public domain | W3C validator |