Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindis Unicode version

Theorem bj-bdfindis 14860
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4601 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4601, finds2 4602, finds1 4603. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-bdfindis.bd  |- BOUNDED  ph
bj-bdfindis.nf0  |-  F/ x ps
bj-bdfindis.nf1  |-  F/ x ch
bj-bdfindis.nfsuc  |-  F/ x th
bj-bdfindis.0  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
bj-bdfindis.1  |-  ( x  =  y  ->  ( ph  ->  ch ) )
bj-bdfindis.suc  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
Assertion
Ref Expression
bj-bdfindis  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y)    th( x, y)

Proof of Theorem bj-bdfindis
StepHypRef Expression
1 bj-bdfindis.nf0 . . . 4  |-  F/ x ps
2 0ex 4132 . . . 4  |-  (/)  e.  _V
3 bj-bdfindis.0 . . . 4  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
41, 2, 3elabf2 14695 . . 3  |-  ( ps 
->  (/)  e.  { x  |  ph } )
5 bj-bdfindis.nf1 . . . . . 6  |-  F/ x ch
6 bj-bdfindis.1 . . . . . 6  |-  ( x  =  y  ->  ( ph  ->  ch ) )
75, 6elabf1 14694 . . . . 5  |-  ( y  e.  { x  | 
ph }  ->  ch )
8 bj-bdfindis.nfsuc . . . . . 6  |-  F/ x th
9 vex 2742 . . . . . . 7  |-  y  e. 
_V
109bj-sucex 14836 . . . . . 6  |-  suc  y  e.  _V
11 bj-bdfindis.suc . . . . . 6  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
128, 10, 11elabf2 14695 . . . . 5  |-  ( th 
->  suc  y  e.  {
x  |  ph }
)
137, 12imim12i 59 . . . 4  |-  ( ( ch  ->  th )  ->  ( y  e.  {
x  |  ph }  ->  suc  y  e.  {
x  |  ph }
) )
1413ralimi 2540 . . 3  |-  ( A. y  e.  om  ( ch  ->  th )  ->  A. y  e.  om  ( y  e. 
{ x  |  ph }  ->  suc  y  e.  { x  |  ph }
) )
15 bj-bdfindis.bd . . . . 5  |- BOUNDED  ph
1615bdcab 14762 . . . 4  |- BOUNDED  { x  |  ph }
1716bdpeano5 14856 . . 3  |-  ( (
(/)  e.  { x  |  ph }  /\  A. y  e.  om  (
y  e.  { x  |  ph }  ->  suc  y  e.  { x  |  ph } ) )  ->  om  C_  { x  |  ph } )
184, 14, 17syl2an 289 . 2  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  om  C_  { x  |  ph } )
19 ssabral 3228 . 2  |-  ( om  C_  { x  |  ph } 
<-> 
A. x  e.  om  ph )
2018, 19sylib 122 1  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   F/wnf 1460    e. wcel 2148   {cab 2163   A.wral 2455    C_ wss 3131   (/)c0 3424   suc csuc 4367   omcom 4591  BOUNDED wbd 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14726  ax-bdor 14729  ax-bdex 14732  ax-bdeq 14733  ax-bdel 14734  ax-bdsb 14735  ax-bdsep 14797  ax-infvn 14854
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592  df-bdc 14754  df-bj-ind 14840
This theorem is referenced by:  bj-bdfindisg  14861  bj-bdfindes  14862  bj-nn0suc0  14863
  Copyright terms: Public domain W3C validator