| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | Unicode version | ||
| Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4637 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4637, finds2 4638, finds1 4639. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-bdfindis.bd |
|
| bj-bdfindis.nf0 |
|
| bj-bdfindis.nf1 |
|
| bj-bdfindis.nfsuc |
|
| bj-bdfindis.0 |
|
| bj-bdfindis.1 |
|
| bj-bdfindis.suc |
|
| Ref | Expression |
|---|---|
| bj-bdfindis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bdfindis.nf0 |
. . . 4
| |
| 2 | 0ex 4161 |
. . . 4
| |
| 3 | bj-bdfindis.0 |
. . . 4
| |
| 4 | 1, 2, 3 | elabf2 15512 |
. . 3
|
| 5 | bj-bdfindis.nf1 |
. . . . . 6
| |
| 6 | bj-bdfindis.1 |
. . . . . 6
| |
| 7 | 5, 6 | elabf1 15511 |
. . . . 5
|
| 8 | bj-bdfindis.nfsuc |
. . . . . 6
| |
| 9 | vex 2766 |
. . . . . . 7
| |
| 10 | 9 | bj-sucex 15653 |
. . . . . 6
|
| 11 | bj-bdfindis.suc |
. . . . . 6
| |
| 12 | 8, 10, 11 | elabf2 15512 |
. . . . 5
|
| 13 | 7, 12 | imim12i 59 |
. . . 4
|
| 14 | 13 | ralimi 2560 |
. . 3
|
| 15 | bj-bdfindis.bd |
. . . . 5
| |
| 16 | 15 | bdcab 15579 |
. . . 4
|
| 17 | 16 | bdpeano5 15673 |
. . 3
|
| 18 | 4, 14, 17 | syl2an 289 |
. 2
|
| 19 | ssabral 3255 |
. 2
| |
| 20 | 18, 19 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4160 ax-pr 4243 ax-un 4469 ax-bd0 15543 ax-bdor 15546 ax-bdex 15549 ax-bdeq 15550 ax-bdel 15551 ax-bdsb 15552 ax-bdsep 15614 ax-infvn 15671 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-bdc 15571 df-bj-ind 15657 |
| This theorem is referenced by: bj-bdfindisg 15678 bj-bdfindes 15679 bj-nn0suc0 15680 |
| Copyright terms: Public domain | W3C validator |