Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabf1 GIF version

Theorem elabf1 14760
Description: One implication of elabf 2892. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabf1.nf 𝑥𝜓
elabf1.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabf1 (𝐴 ∈ {𝑥𝜑} → 𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabf1
StepHypRef Expression
1 nfcv 2329 . 2 𝑥𝐴
2 elabf1.nf . 2 𝑥𝜓
3 elabf1.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elabgf1 14758 1 (𝐴 ∈ {𝑥𝜑} → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wnf 1470  wcel 2158  {cab 2173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751
This theorem is referenced by:  elab1  14762  bj-bdfindis  14926
  Copyright terms: Public domain W3C validator