Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabf1 GIF version

Theorem elabf1 16103
Description: One implication of elabf 2946. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabf1.nf 𝑥𝜓
elabf1.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabf1 (𝐴 ∈ {𝑥𝜑} → 𝜓)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabf1
StepHypRef Expression
1 nfcv 2372 . 2 𝑥𝐴
2 elabf1.nf . 2 𝑥𝜓
3 elabf1.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elabgf1 16101 1 (𝐴 ∈ {𝑥𝜑} → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wnf 1506  wcel 2200  {cab 2215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  elab1  16105  bj-bdfindis  16268
  Copyright terms: Public domain W3C validator