Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabf2 GIF version

Theorem elabf2 15428
Description: One implication of elabf 2907. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabf2.nf 𝑥𝜓
elabf2.s 𝐴 ∈ V
elabf2.1 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
elabf2 (𝜓𝐴 ∈ {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabf2
StepHypRef Expression
1 elabf2.s . 2 𝐴 ∈ V
2 nfcv 2339 . . 3 𝑥𝐴
3 elabf2.nf . . 3 𝑥𝜓
4 elabf2.1 . . 3 (𝑥 = 𝐴 → (𝜓𝜑))
52, 3, 4elabgf2 15426 . 2 (𝐴 ∈ V → (𝜓𝐴 ∈ {𝑥𝜑}))
61, 5ax-mp 5 1 (𝜓𝐴 ∈ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnf 1474  wcel 2167  {cab 2182  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  elab2a  15430  bj-bdfindis  15593
  Copyright terms: Public domain W3C validator