Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabf2 GIF version

Theorem elabf2 13817
Description: One implication of elabf 2873. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabf2.nf 𝑥𝜓
elabf2.s 𝐴 ∈ V
elabf2.1 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
elabf2 (𝜓𝐴 ∈ {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem elabf2
StepHypRef Expression
1 elabf2.s . 2 𝐴 ∈ V
2 nfcv 2312 . . 3 𝑥𝐴
3 elabf2.nf . . 3 𝑥𝜓
4 elabf2.1 . . 3 (𝑥 = 𝐴 → (𝜓𝜑))
52, 3, 4elabgf2 13815 . 2 (𝐴 ∈ V → (𝜓𝐴 ∈ {𝑥𝜑}))
61, 5ax-mp 5 1 (𝜓𝐴 ∈ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wnf 1453  wcel 2141  {cab 2156  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  elab2a  13819  bj-bdfindis  13982
  Copyright terms: Public domain W3C validator