ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elelpwi Unicode version

Theorem elelpwi 3627
Description: If  A belongs to a part of  C then  A belongs to  C. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi  |-  ( ( A  e.  B  /\  B  e.  ~P C
)  ->  A  e.  C )

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 3624 . . 3  |-  ( B  e.  ~P C  ->  B  C_  C )
21sseld 3191 . 2  |-  ( B  e.  ~P C  -> 
( A  e.  B  ->  A  e.  C ) )
32impcom 125 1  |-  ( ( A  e.  B  /\  B  e.  ~P C
)  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   ~Pcpw 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617
This theorem is referenced by:  unipw  4260  txdis  14720
  Copyright terms: Public domain W3C validator