ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elelpwi Unicode version

Theorem elelpwi 3661
Description: If  A belongs to a part of  C then  A belongs to  C. (Contributed by FL, 3-Aug-2009.)
Assertion
Ref Expression
elelpwi  |-  ( ( A  e.  B  /\  B  e.  ~P C
)  ->  A  e.  C )

Proof of Theorem elelpwi
StepHypRef Expression
1 elpwi 3658 . . 3  |-  ( B  e.  ~P C  ->  B  C_  C )
21sseld 3223 . 2  |-  ( B  e.  ~P C  -> 
( A  e.  B  ->  A  e.  C ) )
32impcom 125 1  |-  ( ( A  e.  B  /\  B  e.  ~P C
)  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  unipw  4302  txdis  14945  uhgredgrnv  15930
  Copyright terms: Public domain W3C validator