ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpw Unicode version

Theorem nfpw 3614
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1  |-  F/_ x A
Assertion
Ref Expression
nfpw  |-  F/_ x ~P A

Proof of Theorem nfpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-pw 3603 . 2  |-  ~P A  =  { y  |  y 
C_  A }
2 nfcv 2336 . . . 4  |-  F/_ x
y
3 nfpw.1 . . . 4  |-  F/_ x A
42, 3nfss 3172 . . 3  |-  F/ x  y  C_  A
54nfab 2341 . 2  |-  F/_ x { y  |  y 
C_  A }
61, 5nfcxfr 2333 1  |-  F/_ x ~P A
Colors of variables: wff set class
Syntax hints:   {cab 2179   F/_wnfc 2323    C_ wss 3153   ~Pcpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator