ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpw Unicode version

Theorem nfpw 3662
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1  |-  F/_ x A
Assertion
Ref Expression
nfpw  |-  F/_ x ~P A

Proof of Theorem nfpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-pw 3651 . 2  |-  ~P A  =  { y  |  y 
C_  A }
2 nfcv 2372 . . . 4  |-  F/_ x
y
3 nfpw.1 . . . 4  |-  F/_ x A
42, 3nfss 3217 . . 3  |-  F/ x  y  C_  A
54nfab 2377 . 2  |-  F/_ x { y  |  y 
C_  A }
61, 5nfcxfr 2369 1  |-  F/_ x ~P A
Colors of variables: wff set class
Syntax hints:   {cab 2215   F/_wnfc 2359    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator