ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpw Unicode version

Theorem nfpw 3572
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1  |-  F/_ x A
Assertion
Ref Expression
nfpw  |-  F/_ x ~P A

Proof of Theorem nfpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-pw 3561 . 2  |-  ~P A  =  { y  |  y 
C_  A }
2 nfcv 2308 . . . 4  |-  F/_ x
y
3 nfpw.1 . . . 4  |-  F/_ x A
42, 3nfss 3135 . . 3  |-  F/ x  y  C_  A
54nfab 2313 . 2  |-  F/_ x { y  |  y 
C_  A }
61, 5nfcxfr 2305 1  |-  F/_ x ~P A
Colors of variables: wff set class
Syntax hints:   {cab 2151   F/_wnfc 2295    C_ wss 3116   ~Pcpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator