ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw Unicode version

Theorem unipw 4250
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw  |-  U. ~P A  =  A

Proof of Theorem unipw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3842 . . . 4  |-  ( x  e.  U. ~P A  <->  E. y ( x  e.  y  /\  y  e. 
~P A ) )
2 elelpwi 3617 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ~P A
)  ->  x  e.  A )
32exlimiv 1612 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
~P A )  ->  x  e.  A )
41, 3sylbi 121 . . 3  |-  ( x  e.  U. ~P A  ->  x  e.  A )
5 vex 2766 . . . . 5  |-  x  e. 
_V
65snid 3653 . . . 4  |-  x  e. 
{ x }
7 snelpwi 4245 . . . 4  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
8 elunii 3844 . . . 4  |-  ( ( x  e.  { x }  /\  { x }  e.  ~P A )  ->  x  e.  U. ~P A
)
96, 7, 8sylancr 414 . . 3  |-  ( x  e.  A  ->  x  e.  U. ~P A )
104, 9impbii 126 . 2  |-  ( x  e.  U. ~P A  <->  x  e.  A )
1110eqriv 2193 1  |-  U. ~P A  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167   ~Pcpw 3605   {csn 3622   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-uni 3840
This theorem is referenced by:  pwtr  4252  pwexb  4509  univ  4511  unixpss  4776  eltg4i  14291  distop  14321  distopon  14323  distps  14327  ntrss2  14357  isopn3  14361  discld  14372  txdis  14513
  Copyright terms: Public domain W3C validator