Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unipw | Unicode version |
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
Ref | Expression |
---|---|
unipw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3799 | . . . 4 | |
2 | elelpwi 3578 | . . . . 5 | |
3 | 2 | exlimiv 1591 | . . . 4 |
4 | 1, 3 | sylbi 120 | . . 3 |
5 | vex 2733 | . . . . 5 | |
6 | 5 | snid 3614 | . . . 4 |
7 | snelpwi 4197 | . . . 4 | |
8 | elunii 3801 | . . . 4 | |
9 | 6, 7, 8 | sylancr 412 | . . 3 |
10 | 4, 9 | impbii 125 | . 2 |
11 | 10 | eqriv 2167 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wex 1485 wcel 2141 cpw 3566 csn 3583 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-uni 3797 |
This theorem is referenced by: pwtr 4204 pwexb 4459 univ 4461 unixpss 4724 eltg4i 12849 distop 12879 distopon 12881 distps 12885 ntrss2 12915 isopn3 12919 discld 12930 txdis 13071 |
Copyright terms: Public domain | W3C validator |