ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw Unicode version

Theorem unipw 4261
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw  |-  U. ~P A  =  A

Proof of Theorem unipw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3853 . . . 4  |-  ( x  e.  U. ~P A  <->  E. y ( x  e.  y  /\  y  e. 
~P A ) )
2 elelpwi 3628 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ~P A
)  ->  x  e.  A )
32exlimiv 1621 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
~P A )  ->  x  e.  A )
41, 3sylbi 121 . . 3  |-  ( x  e.  U. ~P A  ->  x  e.  A )
5 vex 2775 . . . . 5  |-  x  e. 
_V
65snid 3664 . . . 4  |-  x  e. 
{ x }
7 snelpwi 4256 . . . 4  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
8 elunii 3855 . . . 4  |-  ( ( x  e.  { x }  /\  { x }  e.  ~P A )  ->  x  e.  U. ~P A
)
96, 7, 8sylancr 414 . . 3  |-  ( x  e.  A  ->  x  e.  U. ~P A )
104, 9impbii 126 . 2  |-  ( x  e.  U. ~P A  <->  x  e.  A )
1110eqriv 2202 1  |-  U. ~P A  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   ~Pcpw 3616   {csn 3633   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-uni 3851
This theorem is referenced by:  pwtr  4263  pwexb  4521  univ  4523  unixpss  4788  eltg4i  14527  distop  14557  distopon  14559  distps  14563  ntrss2  14593  isopn3  14597  discld  14608  txdis  14749
  Copyright terms: Public domain W3C validator