| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unipw | Unicode version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| unipw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 3853 |
. . . 4
| |
| 2 | elelpwi 3628 |
. . . . 5
| |
| 3 | 2 | exlimiv 1621 |
. . . 4
|
| 4 | 1, 3 | sylbi 121 |
. . 3
|
| 5 | vex 2775 |
. . . . 5
| |
| 6 | 5 | snid 3664 |
. . . 4
|
| 7 | snelpwi 4256 |
. . . 4
| |
| 8 | elunii 3855 |
. . . 4
| |
| 9 | 6, 7, 8 | sylancr 414 |
. . 3
|
| 10 | 4, 9 | impbii 126 |
. 2
|
| 11 | 10 | eqriv 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-uni 3851 |
| This theorem is referenced by: pwtr 4263 pwexb 4521 univ 4523 unixpss 4788 eltg4i 14527 distop 14557 distopon 14559 distps 14563 ntrss2 14593 isopn3 14597 discld 14608 txdis 14749 |
| Copyright terms: Public domain | W3C validator |