ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw Unicode version

Theorem unipw 4202
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw  |-  U. ~P A  =  A

Proof of Theorem unipw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3799 . . . 4  |-  ( x  e.  U. ~P A  <->  E. y ( x  e.  y  /\  y  e. 
~P A ) )
2 elelpwi 3578 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ~P A
)  ->  x  e.  A )
32exlimiv 1591 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
~P A )  ->  x  e.  A )
41, 3sylbi 120 . . 3  |-  ( x  e.  U. ~P A  ->  x  e.  A )
5 vex 2733 . . . . 5  |-  x  e. 
_V
65snid 3614 . . . 4  |-  x  e. 
{ x }
7 snelpwi 4197 . . . 4  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
8 elunii 3801 . . . 4  |-  ( ( x  e.  { x }  /\  { x }  e.  ~P A )  ->  x  e.  U. ~P A
)
96, 7, 8sylancr 412 . . 3  |-  ( x  e.  A  ->  x  e.  U. ~P A )
104, 9impbii 125 . 2  |-  ( x  e.  U. ~P A  <->  x  e.  A )
1110eqriv 2167 1  |-  U. ~P A  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   ~Pcpw 3566   {csn 3583   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-uni 3797
This theorem is referenced by:  pwtr  4204  pwexb  4459  univ  4461  unixpss  4724  eltg4i  12849  distop  12879  distopon  12881  distps  12885  ntrss2  12915  isopn3  12919  discld  12930  txdis  13071
  Copyright terms: Public domain W3C validator