ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw Unicode version

Theorem unipw 4195
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw  |-  U. ~P A  =  A

Proof of Theorem unipw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3792 . . . 4  |-  ( x  e.  U. ~P A  <->  E. y ( x  e.  y  /\  y  e. 
~P A ) )
2 elelpwi 3571 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ~P A
)  ->  x  e.  A )
32exlimiv 1586 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
~P A )  ->  x  e.  A )
41, 3sylbi 120 . . 3  |-  ( x  e.  U. ~P A  ->  x  e.  A )
5 vex 2729 . . . . 5  |-  x  e. 
_V
65snid 3607 . . . 4  |-  x  e. 
{ x }
7 snelpwi 4190 . . . 4  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
8 elunii 3794 . . . 4  |-  ( ( x  e.  { x }  /\  { x }  e.  ~P A )  ->  x  e.  U. ~P A
)
96, 7, 8sylancr 411 . . 3  |-  ( x  e.  A  ->  x  e.  U. ~P A )
104, 9impbii 125 . 2  |-  ( x  e.  U. ~P A  <->  x  e.  A )
1110eqriv 2162 1  |-  U. ~P A  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   ~Pcpw 3559   {csn 3576   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-uni 3790
This theorem is referenced by:  pwtr  4197  pwexb  4452  univ  4454  unixpss  4717  eltg4i  12695  distop  12725  distopon  12727  distps  12731  ntrss2  12761  isopn3  12765  discld  12776  txdis  12917
  Copyright terms: Public domain W3C validator