| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unipw | Unicode version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
| Ref | Expression |
|---|---|
| unipw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 3891 |
. . . 4
| |
| 2 | elelpwi 3661 |
. . . . 5
| |
| 3 | 2 | exlimiv 1644 |
. . . 4
|
| 4 | 1, 3 | sylbi 121 |
. . 3
|
| 5 | vex 2802 |
. . . . 5
| |
| 6 | 5 | snid 3697 |
. . . 4
|
| 7 | snelpwi 4297 |
. . . 4
| |
| 8 | elunii 3893 |
. . . 4
| |
| 9 | 6, 7, 8 | sylancr 414 |
. . 3
|
| 10 | 4, 9 | impbii 126 |
. 2
|
| 11 | 10 | eqriv 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-uni 3889 |
| This theorem is referenced by: pwtr 4305 pwexb 4565 univ 4567 unixpss 4832 eltg4i 14729 distop 14759 distopon 14761 distps 14765 ntrss2 14795 isopn3 14799 discld 14810 txdis 14951 |
| Copyright terms: Public domain | W3C validator |