ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw Unicode version

Theorem unipw 4139
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw  |-  U. ~P A  =  A

Proof of Theorem unipw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3739 . . . 4  |-  ( x  e.  U. ~P A  <->  E. y ( x  e.  y  /\  y  e. 
~P A ) )
2 elelpwi 3522 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ~P A
)  ->  x  e.  A )
32exlimiv 1577 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
~P A )  ->  x  e.  A )
41, 3sylbi 120 . . 3  |-  ( x  e.  U. ~P A  ->  x  e.  A )
5 vex 2689 . . . . 5  |-  x  e. 
_V
65snid 3556 . . . 4  |-  x  e. 
{ x }
7 snelpwi 4134 . . . 4  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
8 elunii 3741 . . . 4  |-  ( ( x  e.  { x }  /\  { x }  e.  ~P A )  ->  x  e.  U. ~P A
)
96, 7, 8sylancr 410 . . 3  |-  ( x  e.  A  ->  x  e.  U. ~P A )
104, 9impbii 125 . 2  |-  ( x  e.  U. ~P A  <->  x  e.  A )
1110eqriv 2136 1  |-  U. ~P A  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   ~Pcpw 3510   {csn 3527   U.cuni 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-uni 3737
This theorem is referenced by:  pwtr  4141  pwexb  4395  univ  4397  unixpss  4652  eltg4i  12224  distop  12254  distopon  12256  distps  12260  ntrss2  12290  isopn3  12294  discld  12305  txdis  12446
  Copyright terms: Public domain W3C validator