Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unipw | Unicode version |
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) |
Ref | Expression |
---|---|
unipw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3792 | . . . 4 | |
2 | elelpwi 3571 | . . . . 5 | |
3 | 2 | exlimiv 1586 | . . . 4 |
4 | 1, 3 | sylbi 120 | . . 3 |
5 | vex 2729 | . . . . 5 | |
6 | 5 | snid 3607 | . . . 4 |
7 | snelpwi 4190 | . . . 4 | |
8 | elunii 3794 | . . . 4 | |
9 | 6, 7, 8 | sylancr 411 | . . 3 |
10 | 4, 9 | impbii 125 | . 2 |
11 | 10 | eqriv 2162 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cpw 3559 csn 3576 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-uni 3790 |
This theorem is referenced by: pwtr 4197 pwexb 4452 univ 4454 unixpss 4717 eltg4i 12695 distop 12725 distopon 12727 distps 12731 ntrss2 12761 isopn3 12765 discld 12776 txdis 12917 |
Copyright terms: Public domain | W3C validator |