ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw Unicode version

Theorem unipw 4279
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw  |-  U. ~P A  =  A

Proof of Theorem unipw
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3867 . . . 4  |-  ( x  e.  U. ~P A  <->  E. y ( x  e.  y  /\  y  e. 
~P A ) )
2 elelpwi 3638 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ~P A
)  ->  x  e.  A )
32exlimiv 1622 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e. 
~P A )  ->  x  e.  A )
41, 3sylbi 121 . . 3  |-  ( x  e.  U. ~P A  ->  x  e.  A )
5 vex 2779 . . . . 5  |-  x  e. 
_V
65snid 3674 . . . 4  |-  x  e. 
{ x }
7 snelpwi 4273 . . . 4  |-  ( x  e.  A  ->  { x }  e.  ~P A
)
8 elunii 3869 . . . 4  |-  ( ( x  e.  { x }  /\  { x }  e.  ~P A )  ->  x  e.  U. ~P A
)
96, 7, 8sylancr 414 . . 3  |-  ( x  e.  A  ->  x  e.  U. ~P A )
104, 9impbii 126 . 2  |-  ( x  e.  U. ~P A  <->  x  e.  A )
1110eqriv 2204 1  |-  U. ~P A  =  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   ~Pcpw 3626   {csn 3643   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-uni 3865
This theorem is referenced by:  pwtr  4281  pwexb  4539  univ  4541  unixpss  4806  eltg4i  14642  distop  14672  distopon  14674  distps  14678  ntrss2  14708  isopn3  14712  discld  14723  txdis  14864
  Copyright terms: Public domain W3C validator