ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid Unicode version

Theorem elpwid 3626
Description: An element of a power class is a subclass. Deduction form of elpwi 3624. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1  |-  ( ph  ->  A  e.  ~P B
)
Assertion
Ref Expression
elpwid  |-  ( ph  ->  A  C_  B )

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2  |-  ( ph  ->  A  e.  ~P B
)
2 elpwi 3624 . 2  |-  ( A  e.  ~P B  ->  A  C_  B )
31, 2syl 14 1  |-  ( ph  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175    C_ wss 3165   ~Pcpw 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617
This theorem is referenced by:  fopwdom  6932  ssenen  6947  fival  7071  fiuni  7079  3nelsucpw1  7345  elnp1st2nd  7588  ixxssxr  10021  elfzoelz  10268  restid2  13022  epttop  14504  neiss2  14556  blssm  14835  blin2  14846  cncfrss  14989  cncfrss2  14990  dvidsslem  15107  dvconstss  15112  plybss  15147  pwle2  15868
  Copyright terms: Public domain W3C validator