| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwid | Unicode version | ||
| Description: An element of a power class is a subclass. Deduction form of elpwi 3624. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elpwid.1 |
|
| Ref | Expression |
|---|---|
| elpwid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwid.1 |
. 2
| |
| 2 | elpwi 3624 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 |
| This theorem is referenced by: fopwdom 6915 ssenen 6930 fival 7054 fiuni 7062 3nelsucpw1 7328 elnp1st2nd 7571 ixxssxr 10004 elfzoelz 10251 restid2 12998 epttop 14480 neiss2 14532 blssm 14811 blin2 14822 cncfrss 14965 cncfrss2 14966 dvidsslem 15083 dvconstss 15088 plybss 15123 pwle2 15799 |
| Copyright terms: Public domain | W3C validator |