| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwid | Unicode version | ||
| Description: An element of a power class is a subclass. Deduction form of elpwi 3658. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elpwid.1 |
|
| Ref | Expression |
|---|---|
| elpwid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwid.1 |
. 2
| |
| 2 | elpwi 3658 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: fopwdom 6993 ssenen 7008 fival 7133 fiuni 7141 3nelsucpw1 7415 elnp1st2nd 7659 ixxssxr 10092 elfzoelz 10339 restid2 13276 epttop 14758 neiss2 14810 blssm 15089 blin2 15100 cncfrss 15243 cncfrss2 15244 dvidsslem 15361 dvconstss 15366 plybss 15401 uhgrss 15869 upgrss 15893 usgrss 15969 pwle2 16323 |
| Copyright terms: Public domain | W3C validator |