Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid Unicode version

Theorem elpwid 3527
 Description: An element of a power class is a subclass. Deduction form of elpwi 3525. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1
Assertion
Ref Expression
elpwid

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2
2 elpwi 3525 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1481   wss 3077  cpw 3516 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2692  df-in 3083  df-ss 3090  df-pw 3518 This theorem is referenced by:  fopwdom  6739  ssenen  6754  fival  6868  fiuni  6876  3nelsucpw1  7105  elnp1st2nd  7328  ixxssxr  9733  elfzoelz  9975  restid2  12188  epttop  12318  neiss2  12370  blssm  12649  blin2  12660  cncfrss  12790  cncfrss2  12791  pwle2  13385
 Copyright terms: Public domain W3C validator