ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid Unicode version

Theorem elpwid 3616
Description: An element of a power class is a subclass. Deduction form of elpwi 3614. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1  |-  ( ph  ->  A  e.  ~P B
)
Assertion
Ref Expression
elpwid  |-  ( ph  ->  A  C_  B )

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2  |-  ( ph  ->  A  e.  ~P B
)
2 elpwi 3614 . 2  |-  ( A  e.  ~P B  ->  A  C_  B )
31, 2syl 14 1  |-  ( ph  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  fopwdom  6897  ssenen  6912  fival  7036  fiuni  7044  3nelsucpw1  7301  elnp1st2nd  7543  ixxssxr  9975  elfzoelz  10222  restid2  12919  epttop  14326  neiss2  14378  blssm  14657  blin2  14668  cncfrss  14811  cncfrss2  14812  dvidsslem  14929  dvconstss  14934  plybss  14969  pwle2  15643
  Copyright terms: Public domain W3C validator