![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpwid | Unicode version |
Description: An element of a power class is a subclass. Deduction form of elpwi 3483. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elpwid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elpwid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwid.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elpwi 3483 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-in 3041 df-ss 3048 df-pw 3476 |
This theorem is referenced by: fopwdom 6681 ssenen 6696 fival 6808 fiuni 6816 elnp1st2nd 7226 ixxssxr 9570 elfzoelz 9811 restid2 11966 epttop 12096 neiss2 12148 blssm 12404 blin2 12415 cncfrss 12542 cncfrss2 12543 pwle2 12876 |
Copyright terms: Public domain | W3C validator |