| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elpwid | Unicode version | ||
| Description: An element of a power class is a subclass. Deduction form of elpwi 3614. (Contributed by David Moews, 1-May-2017.) | 
| Ref | Expression | 
|---|---|
| elpwid.1 | 
 | 
| Ref | Expression | 
|---|---|
| elpwid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpwid.1 | 
. 2
 | |
| 2 | elpwi 3614 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 | 
| This theorem is referenced by: fopwdom 6897 ssenen 6912 fival 7036 fiuni 7044 3nelsucpw1 7301 elnp1st2nd 7543 ixxssxr 9975 elfzoelz 10222 restid2 12919 epttop 14326 neiss2 14378 blssm 14657 blin2 14668 cncfrss 14811 cncfrss2 14812 dvidsslem 14929 dvconstss 14934 plybss 14969 pwle2 15643 | 
| Copyright terms: Public domain | W3C validator |