![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpwid | Unicode version |
Description: An element of a power class is a subclass. Deduction form of elpwi 3611. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elpwid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elpwid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwid.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elpwi 3611 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-pw 3604 |
This theorem is referenced by: fopwdom 6894 ssenen 6909 fival 7031 fiuni 7039 3nelsucpw1 7296 elnp1st2nd 7538 ixxssxr 9969 elfzoelz 10216 restid2 12862 epttop 14269 neiss2 14321 blssm 14600 blin2 14611 cncfrss 14754 cncfrss2 14755 dvidsslem 14872 dvconstss 14877 plybss 14912 pwle2 15559 |
Copyright terms: Public domain | W3C validator |