| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwid | Unicode version | ||
| Description: An element of a power class is a subclass. Deduction form of elpwi 3630. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elpwid.1 |
|
| Ref | Expression |
|---|---|
| elpwid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwid.1 |
. 2
| |
| 2 | elpwi 3630 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 |
| This theorem is referenced by: fopwdom 6948 ssenen 6963 fival 7087 fiuni 7095 3nelsucpw1 7365 elnp1st2nd 7609 ixxssxr 10042 elfzoelz 10289 restid2 13155 epttop 14637 neiss2 14689 blssm 14968 blin2 14979 cncfrss 15122 cncfrss2 15123 dvidsslem 15240 dvconstss 15245 plybss 15280 uhgrss 15746 upgrss 15770 pwle2 16076 |
| Copyright terms: Public domain | W3C validator |