ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid Unicode version

Theorem elpwid 3626
Description: An element of a power class is a subclass. Deduction form of elpwi 3624. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1  |-  ( ph  ->  A  e.  ~P B
)
Assertion
Ref Expression
elpwid  |-  ( ph  ->  A  C_  B )

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2  |-  ( ph  ->  A  e.  ~P B
)
2 elpwi 3624 . 2  |-  ( A  e.  ~P B  ->  A  C_  B )
31, 2syl 14 1  |-  ( ph  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175    C_ wss 3165   ~Pcpw 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617
This theorem is referenced by:  fopwdom  6915  ssenen  6930  fival  7054  fiuni  7062  3nelsucpw1  7328  elnp1st2nd  7571  ixxssxr  10004  elfzoelz  10251  restid2  12998  epttop  14480  neiss2  14532  blssm  14811  blin2  14822  cncfrss  14965  cncfrss2  14966  dvidsslem  15083  dvconstss  15088  plybss  15123  pwle2  15799
  Copyright terms: Public domain W3C validator