Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwid | Unicode version |
Description: An element of a power class is a subclass. Deduction form of elpwi 3575. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elpwid.1 |
Ref | Expression |
---|---|
elpwid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwid.1 | . 2 | |
2 | elpwi 3575 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 wss 3121 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: fopwdom 6814 ssenen 6829 fival 6947 fiuni 6955 3nelsucpw1 7211 elnp1st2nd 7438 ixxssxr 9857 elfzoelz 10103 restid2 12588 epttop 12884 neiss2 12936 blssm 13215 blin2 13226 cncfrss 13356 cncfrss2 13357 pwle2 14031 |
Copyright terms: Public domain | W3C validator |