Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwid | Unicode version |
Description: An element of a power class is a subclass. Deduction form of elpwi 3568. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elpwid.1 |
Ref | Expression |
---|---|
elpwid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwid.1 | . 2 | |
2 | elpwi 3568 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wss 3116 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: fopwdom 6802 ssenen 6817 fival 6935 fiuni 6943 3nelsucpw1 7190 elnp1st2nd 7417 ixxssxr 9836 elfzoelz 10082 restid2 12565 epttop 12740 neiss2 12792 blssm 13071 blin2 13082 cncfrss 13212 cncfrss2 13213 pwle2 13888 |
Copyright terms: Public domain | W3C validator |