ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi Unicode version

Theorem elpwi 3658
Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elpwi  |-  ( A  e.  ~P B  ->  A  C_  B )

Proof of Theorem elpwi
StepHypRef Expression
1 elpwg 3657 . 2  |-  ( A  e.  ~P B  -> 
( A  e.  ~P B 
<->  A  C_  B )
)
21ibi 176 1  |-  ( A  e.  ~P B  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  elpwid  3660  elelpwi  3661  elpw2g  4240  eldifpw  4568  iunpw  4571  f1opw2  6212  pw1dc1  7076  fi0  7142  pw1m  7409  pw1on  7411  lspf  14353  cnntr  14899  edgssv2en  15997  2omap  16359  pw1map  16361
  Copyright terms: Public domain W3C validator