ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi Unicode version

Theorem elpwi 3610
Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elpwi  |-  ( A  e.  ~P B  ->  A  C_  B )

Proof of Theorem elpwi
StepHypRef Expression
1 elpwg 3609 . 2  |-  ( A  e.  ~P B  -> 
( A  e.  ~P B 
<->  A  C_  B )
)
21ibi 176 1  |-  ( A  e.  ~P B  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    C_ wss 3153   ~Pcpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by:  elpwid  3612  elelpwi  3613  elpw2g  4185  eldifpw  4508  iunpw  4511  f1opw2  6124  pw1dc1  6970  fi0  7034  pw1on  7286  lspf  13885  cnntr  14393
  Copyright terms: Public domain W3C validator