![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elelpwi | GIF version |
Description: If 𝐴 belongs to a part of 𝐶 then 𝐴 belongs to 𝐶. (Contributed by FL, 3-Aug-2009.) |
Ref | Expression |
---|---|
elelpwi | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 3599 | . . 3 ⊢ (𝐵 ∈ 𝒫 𝐶 → 𝐵 ⊆ 𝐶) | |
2 | 1 | sseld 3169 | . 2 ⊢ (𝐵 ∈ 𝒫 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) |
3 | 2 | impcom 125 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝐶) → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 𝒫 cpw 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-in 3150 df-ss 3157 df-pw 3592 |
This theorem is referenced by: unipw 4235 txdis 14234 |
Copyright terms: Public domain | W3C validator |