![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseld | Unicode version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
sseld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ssel 3173 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: sselda 3179 sseldd 3180 ssneld 3181 elelpwi 3613 ssbrd 4072 uniopel 4285 onintonm 4549 sucprcreg 4581 ordsuc 4595 0elnn 4651 dmrnssfld 4925 nfunv 5287 opelf 5425 fvimacnv 5673 ffvelcdm 5691 resflem 5722 f1imass 5817 dftpos3 6315 nnmordi 6569 mapsn 6744 ixpf 6774 pw2f1odclem 6890 diffifi 6950 ordiso2 7094 difinfinf 7160 exmidapne 7320 prarloclemarch2 7479 ltexprlemrl 7670 cauappcvgprlemladdrl 7717 caucvgprlemladdrl 7738 caucvgprlem1 7739 axpre-suploclemres 7961 uzind 9428 supinfneg 9660 infsupneg 9661 ixxssxr 9966 elfz0add 10186 fzoss1 10238 frecuzrdgrclt 10486 fsum3cvg 11521 isumrpcl 11637 fproddccvg 11715 reumodprminv 12391 issubmnd 13023 issubg2m 13259 eqgid 13296 issubrng2 13706 subrgdvds 13731 issubrg2 13737 lssats2 13910 rnglidlmmgm 13992 rnglidlmsgrp 13993 rnglidlrng 13994 lmtopcnp 14418 txuni2 14424 tx1cn 14437 tx2cn 14438 txlm 14447 imasnopn 14467 xmetunirn 14526 mopnval 14610 metrest 14674 dedekindicc 14787 ivthdec 14798 limcimolemlt 14818 plyssc 14885 bj-charfundc 15300 bj-nnord 15450 |
Copyright terms: Public domain | W3C validator |