| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | Unicode version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 |
|
| Ref | Expression |
|---|---|
| sseld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 |
. 2
| |
| 2 | ssel 3178 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sselda 3184 sseldd 3185 ssneld 3186 elelpwi 3618 ssbrd 4077 uniopel 4290 onintonm 4554 sucprcreg 4586 ordsuc 4600 0elnn 4656 dmrnssfld 4930 nfunv 5292 opelf 5430 fvimacnv 5678 ffvelcdm 5696 resflem 5727 f1imass 5822 dftpos3 6321 nnmordi 6575 mapsn 6750 ixpf 6780 pw2f1odclem 6896 diffifi 6956 ordiso2 7102 difinfinf 7168 exmidapne 7329 prarloclemarch2 7488 ltexprlemrl 7679 cauappcvgprlemladdrl 7726 caucvgprlemladdrl 7747 caucvgprlem1 7748 axpre-suploclemres 7970 uzind 9439 supinfneg 9671 infsupneg 9672 ixxssxr 9977 elfz0add 10197 fzoss1 10249 frecuzrdgrclt 10509 fsum3cvg 11545 isumrpcl 11661 fproddccvg 11739 reumodprminv 12432 issubmnd 13093 issubg2m 13329 eqgid 13366 issubrng2 13776 subrgdvds 13801 issubrg2 13807 lssats2 13980 rnglidlmmgm 14062 rnglidlmsgrp 14063 rnglidlrng 14064 lmtopcnp 14496 txuni2 14502 tx1cn 14515 tx2cn 14516 txlm 14525 imasnopn 14545 xmetunirn 14604 mopnval 14688 metrest 14752 dedekindicc 14879 ivthdec 14890 limcimolemlt 14910 plyssc 14985 bj-charfundc 15464 bj-nnord 15614 |
| Copyright terms: Public domain | W3C validator |