| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | Unicode version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 |
|
| Ref | Expression |
|---|---|
| sseld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 |
. 2
| |
| 2 | ssel 3178 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sselda 3184 sseldd 3185 ssneld 3186 elelpwi 3618 ssbrd 4077 uniopel 4290 onintonm 4554 sucprcreg 4586 ordsuc 4600 0elnn 4656 dmrnssfld 4930 nfunv 5292 opelf 5432 fvimacnv 5680 ffvelcdm 5698 resflem 5729 f1imass 5824 dftpos3 6329 nnmordi 6583 mapsn 6758 ixpf 6788 pw2f1odclem 6904 diffifi 6964 ordiso2 7110 difinfinf 7176 exmidapne 7343 prarloclemarch2 7503 ltexprlemrl 7694 cauappcvgprlemladdrl 7741 caucvgprlemladdrl 7762 caucvgprlem1 7763 axpre-suploclemres 7985 uzind 9454 supinfneg 9686 infsupneg 9687 ixxssxr 9992 elfz0add 10212 fzoss1 10264 frecuzrdgrclt 10524 fsum3cvg 11560 isumrpcl 11676 fproddccvg 11754 reumodprminv 12447 issubmnd 13144 issubg2m 13395 eqgid 13432 issubrng2 13842 subrgdvds 13867 issubrg2 13873 lssats2 14046 rnglidlmmgm 14128 rnglidlmsgrp 14129 rnglidlrng 14130 lmtopcnp 14570 txuni2 14576 tx1cn 14589 tx2cn 14590 txlm 14599 imasnopn 14619 xmetunirn 14678 mopnval 14762 metrest 14826 dedekindicc 14953 ivthdec 14964 limcimolemlt 14984 plyssc 15059 bj-charfundc 15538 bj-nnord 15688 |
| Copyright terms: Public domain | W3C validator |