| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | Unicode version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 |
|
| Ref | Expression |
|---|---|
| sseld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 |
. 2
| |
| 2 | ssel 3218 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sselda 3224 sseldd 3225 ssneld 3226 elelpwi 3661 ssbrd 4126 uniopel 4343 onintonm 4609 sucprcreg 4641 ordsuc 4655 0elnn 4711 dmrnssfld 4987 nfunv 5351 opelf 5496 fvimacnv 5750 ffvelcdm 5768 resflem 5799 f1imass 5898 dftpos3 6408 nnmordi 6662 mapsn 6837 ixpf 6867 pw2f1odclem 6995 diffifi 7056 ordiso2 7202 difinfinf 7268 exmidapne 7446 prarloclemarch2 7606 ltexprlemrl 7797 cauappcvgprlemladdrl 7844 caucvgprlemladdrl 7865 caucvgprlem1 7866 axpre-suploclemres 8088 uzind 9558 supinfneg 9790 infsupneg 9791 ixxssxr 10096 elfz0add 10316 fzoss1 10369 elfzoextl 10397 frecuzrdgrclt 10637 ccatval2 11133 swrdswrd 11237 pfxccatin12lem2a 11259 swrdccatin2 11261 pfxccatpfx2 11269 fsum3cvg 11889 isumrpcl 12005 fproddccvg 12083 reumodprminv 12776 issubmnd 13475 issubg2m 13726 eqgid 13763 issubrng2 14174 subrgdvds 14199 issubrg2 14205 lssats2 14378 rnglidlmmgm 14460 rnglidlmsgrp 14461 rnglidlrng 14462 mplbasss 14660 lmtopcnp 14924 txuni2 14930 tx1cn 14943 tx2cn 14944 txlm 14953 imasnopn 14973 xmetunirn 15032 mopnval 15116 metrest 15180 dedekindicc 15307 ivthdec 15318 limcimolemlt 15338 plyssc 15413 edgupgren 15939 bj-charfundc 16171 bj-nnord 16321 |
| Copyright terms: Public domain | W3C validator |