Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseld | Unicode version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
sseld.1 |
Ref | Expression |
---|---|
sseld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | . 2 | |
2 | ssel 3122 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: sselda 3128 sseldd 3129 ssneld 3130 elelpwi 3555 ssbrd 4007 uniopel 4215 onintonm 4474 sucprcreg 4506 ordsuc 4520 0elnn 4576 dmrnssfld 4846 nfunv 5200 opelf 5338 fvimacnv 5579 ffvelrn 5597 resflem 5628 f1imass 5719 dftpos3 6203 nnmordi 6456 mapsn 6628 ixpf 6658 diffifi 6832 ordiso2 6969 difinfinf 7035 prarloclemarch2 7322 ltexprlemrl 7513 cauappcvgprlemladdrl 7560 caucvgprlemladdrl 7581 caucvgprlem1 7582 axpre-suploclemres 7804 uzind 9258 supinfneg 9489 infsupneg 9490 ixxssxr 9786 elfz0add 10004 fzoss1 10052 frecuzrdgrclt 10296 fsum3cvg 11257 isumrpcl 11373 fproddccvg 11451 lmtopcnp 12610 txuni2 12616 tx1cn 12629 tx2cn 12630 txlm 12639 imasnopn 12659 xmetunirn 12718 mopnval 12802 metrest 12866 dedekindicc 12971 ivthdec 12982 limcimolemlt 12993 bj-charfundc 13342 bj-nnord 13492 |
Copyright terms: Public domain | W3C validator |