| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | Unicode version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 |
|
| Ref | Expression |
|---|---|
| sseld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 |
. 2
| |
| 2 | ssel 3187 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sselda 3193 sseldd 3194 ssneld 3195 elelpwi 3628 ssbrd 4088 uniopel 4302 onintonm 4566 sucprcreg 4598 ordsuc 4612 0elnn 4668 dmrnssfld 4942 nfunv 5305 opelf 5449 fvimacnv 5697 ffvelcdm 5715 resflem 5746 f1imass 5845 dftpos3 6350 nnmordi 6604 mapsn 6779 ixpf 6809 pw2f1odclem 6933 diffifi 6993 ordiso2 7139 difinfinf 7205 exmidapne 7374 prarloclemarch2 7534 ltexprlemrl 7725 cauappcvgprlemladdrl 7772 caucvgprlemladdrl 7793 caucvgprlem1 7794 axpre-suploclemres 8016 uzind 9486 supinfneg 9718 infsupneg 9719 ixxssxr 10024 elfz0add 10244 fzoss1 10297 elfzoextl 10322 frecuzrdgrclt 10562 ccatval2 11057 fsum3cvg 11722 isumrpcl 11838 fproddccvg 11916 reumodprminv 12609 issubmnd 13307 issubg2m 13558 eqgid 13595 issubrng2 14005 subrgdvds 14030 issubrg2 14036 lssats2 14209 rnglidlmmgm 14291 rnglidlmsgrp 14292 rnglidlrng 14293 mplbasss 14491 lmtopcnp 14755 txuni2 14761 tx1cn 14774 tx2cn 14775 txlm 14784 imasnopn 14804 xmetunirn 14863 mopnval 14947 metrest 15011 dedekindicc 15138 ivthdec 15149 limcimolemlt 15169 plyssc 15244 bj-charfundc 15781 bj-nnord 15931 |
| Copyright terms: Public domain | W3C validator |