| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | Unicode version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 |
|
| Ref | Expression |
|---|---|
| sseld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 |
. 2
| |
| 2 | ssel 3187 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sselda 3193 sseldd 3194 ssneld 3195 elelpwi 3628 ssbrd 4087 uniopel 4301 onintonm 4565 sucprcreg 4597 ordsuc 4611 0elnn 4667 dmrnssfld 4941 nfunv 5304 opelf 5447 fvimacnv 5695 ffvelcdm 5713 resflem 5744 f1imass 5843 dftpos3 6348 nnmordi 6602 mapsn 6777 ixpf 6807 pw2f1odclem 6931 diffifi 6991 ordiso2 7137 difinfinf 7203 exmidapne 7372 prarloclemarch2 7532 ltexprlemrl 7723 cauappcvgprlemladdrl 7770 caucvgprlemladdrl 7791 caucvgprlem1 7792 axpre-suploclemres 8014 uzind 9484 supinfneg 9716 infsupneg 9717 ixxssxr 10022 elfz0add 10242 fzoss1 10295 elfzoextl 10320 frecuzrdgrclt 10560 ccatval2 11054 fsum3cvg 11689 isumrpcl 11805 fproddccvg 11883 reumodprminv 12576 issubmnd 13274 issubg2m 13525 eqgid 13562 issubrng2 13972 subrgdvds 13997 issubrg2 14003 lssats2 14176 rnglidlmmgm 14258 rnglidlmsgrp 14259 rnglidlrng 14260 mplbasss 14458 lmtopcnp 14722 txuni2 14728 tx1cn 14741 tx2cn 14742 txlm 14751 imasnopn 14771 xmetunirn 14830 mopnval 14914 metrest 14978 dedekindicc 15105 ivthdec 15116 limcimolemlt 15136 plyssc 15211 bj-charfundc 15744 bj-nnord 15894 |
| Copyright terms: Public domain | W3C validator |