| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | Unicode version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 |
|
| Ref | Expression |
|---|---|
| sseld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 |
. 2
| |
| 2 | ssel 3177 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sselda 3183 sseldd 3184 ssneld 3185 elelpwi 3617 ssbrd 4076 uniopel 4289 onintonm 4553 sucprcreg 4585 ordsuc 4599 0elnn 4655 dmrnssfld 4929 nfunv 5291 opelf 5429 fvimacnv 5677 ffvelcdm 5695 resflem 5726 f1imass 5821 dftpos3 6320 nnmordi 6574 mapsn 6749 ixpf 6779 pw2f1odclem 6895 diffifi 6955 ordiso2 7101 difinfinf 7167 exmidapne 7327 prarloclemarch2 7486 ltexprlemrl 7677 cauappcvgprlemladdrl 7724 caucvgprlemladdrl 7745 caucvgprlem1 7746 axpre-suploclemres 7968 uzind 9437 supinfneg 9669 infsupneg 9670 ixxssxr 9975 elfz0add 10195 fzoss1 10247 frecuzrdgrclt 10507 fsum3cvg 11543 isumrpcl 11659 fproddccvg 11737 reumodprminv 12422 issubmnd 13083 issubg2m 13319 eqgid 13356 issubrng2 13766 subrgdvds 13791 issubrg2 13797 lssats2 13970 rnglidlmmgm 14052 rnglidlmsgrp 14053 rnglidlrng 14054 lmtopcnp 14486 txuni2 14492 tx1cn 14505 tx2cn 14506 txlm 14515 imasnopn 14535 xmetunirn 14594 mopnval 14678 metrest 14742 dedekindicc 14869 ivthdec 14880 limcimolemlt 14900 plyssc 14975 bj-charfundc 15454 bj-nnord 15604 |
| Copyright terms: Public domain | W3C validator |