| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | Unicode version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 |
|
| Ref | Expression |
|---|---|
| sseld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 |
. 2
| |
| 2 | ssel 3195 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sselda 3201 sseldd 3202 ssneld 3203 elelpwi 3638 ssbrd 4102 uniopel 4319 onintonm 4583 sucprcreg 4615 ordsuc 4629 0elnn 4685 dmrnssfld 4960 nfunv 5323 opelf 5468 fvimacnv 5718 ffvelcdm 5736 resflem 5767 f1imass 5866 dftpos3 6371 nnmordi 6625 mapsn 6800 ixpf 6830 pw2f1odclem 6956 diffifi 7017 ordiso2 7163 difinfinf 7229 exmidapne 7407 prarloclemarch2 7567 ltexprlemrl 7758 cauappcvgprlemladdrl 7805 caucvgprlemladdrl 7826 caucvgprlem1 7827 axpre-suploclemres 8049 uzind 9519 supinfneg 9751 infsupneg 9752 ixxssxr 10057 elfz0add 10277 fzoss1 10330 elfzoextl 10357 frecuzrdgrclt 10597 ccatval2 11092 swrdswrd 11196 pfxccatin12lem2a 11218 swrdccatin2 11220 pfxccatpfx2 11228 fsum3cvg 11804 isumrpcl 11920 fproddccvg 11998 reumodprminv 12691 issubmnd 13389 issubg2m 13640 eqgid 13677 issubrng2 14087 subrgdvds 14112 issubrg2 14118 lssats2 14291 rnglidlmmgm 14373 rnglidlmsgrp 14374 rnglidlrng 14375 mplbasss 14573 lmtopcnp 14837 txuni2 14843 tx1cn 14856 tx2cn 14857 txlm 14866 imasnopn 14886 xmetunirn 14945 mopnval 15029 metrest 15093 dedekindicc 15220 ivthdec 15231 limcimolemlt 15251 plyssc 15326 edgupgren 15845 bj-charfundc 15943 bj-nnord 16093 |
| Copyright terms: Public domain | W3C validator |