Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseld | Unicode version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
sseld.1 |
Ref | Expression |
---|---|
sseld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | . 2 | |
2 | ssel 3141 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sselda 3147 sseldd 3148 ssneld 3149 elelpwi 3578 ssbrd 4032 uniopel 4241 onintonm 4501 sucprcreg 4533 ordsuc 4547 0elnn 4603 dmrnssfld 4874 nfunv 5231 opelf 5369 fvimacnv 5611 ffvelrn 5629 resflem 5660 f1imass 5753 dftpos3 6241 nnmordi 6495 mapsn 6668 ixpf 6698 diffifi 6872 ordiso2 7012 difinfinf 7078 prarloclemarch2 7381 ltexprlemrl 7572 cauappcvgprlemladdrl 7619 caucvgprlemladdrl 7640 caucvgprlem1 7641 axpre-suploclemres 7863 uzind 9323 supinfneg 9554 infsupneg 9555 ixxssxr 9857 elfz0add 10076 fzoss1 10127 frecuzrdgrclt 10371 fsum3cvg 11341 isumrpcl 11457 fproddccvg 11535 reumodprminv 12207 lmtopcnp 13044 txuni2 13050 tx1cn 13063 tx2cn 13064 txlm 13073 imasnopn 13093 xmetunirn 13152 mopnval 13236 metrest 13300 dedekindicc 13405 ivthdec 13416 limcimolemlt 13427 bj-charfundc 13843 bj-nnord 13993 |
Copyright terms: Public domain | W3C validator |