Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseld | Unicode version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
sseld.1 |
Ref | Expression |
---|---|
sseld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | . 2 | |
2 | ssel 3135 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 |
This theorem is referenced by: sselda 3141 sseldd 3142 ssneld 3143 elelpwi 3570 ssbrd 4024 uniopel 4233 onintonm 4493 sucprcreg 4525 ordsuc 4539 0elnn 4595 dmrnssfld 4866 nfunv 5220 opelf 5358 fvimacnv 5599 ffvelrn 5617 resflem 5648 f1imass 5741 dftpos3 6226 nnmordi 6480 mapsn 6652 ixpf 6682 diffifi 6856 ordiso2 6996 difinfinf 7062 prarloclemarch2 7356 ltexprlemrl 7547 cauappcvgprlemladdrl 7594 caucvgprlemladdrl 7615 caucvgprlem1 7616 axpre-suploclemres 7838 uzind 9298 supinfneg 9529 infsupneg 9530 ixxssxr 9832 elfz0add 10051 fzoss1 10102 frecuzrdgrclt 10346 fsum3cvg 11315 isumrpcl 11431 fproddccvg 11509 reumodprminv 12181 lmtopcnp 12850 txuni2 12856 tx1cn 12869 tx2cn 12870 txlm 12879 imasnopn 12899 xmetunirn 12958 mopnval 13042 metrest 13106 dedekindicc 13211 ivthdec 13222 limcimolemlt 13233 bj-charfundc 13650 bj-nnord 13800 |
Copyright terms: Public domain | W3C validator |