Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elin3 | GIF version |
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin3.x | ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) |
Ref | Expression |
---|---|
elin3 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3290 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
2 | 1 | anbi1i 454 | . 2 ⊢ ((𝐴 ∈ (𝐵 ∩ 𝐶) ∧ 𝐴 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ∧ 𝐴 ∈ 𝐷)) |
3 | elin3.x | . . 3 ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) | |
4 | 3 | elin2 3295 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ (𝐵 ∩ 𝐶) ∧ 𝐴 ∈ 𝐷)) |
5 | df-3an 965 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ∧ 𝐴 ∈ 𝐷)) | |
6 | 2, 4, 5 | 3bitr4i 211 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 ∩ cin 3101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |