ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin3 GIF version

Theorem elin3 3318
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin3.x 𝑋 = ((𝐵𝐶) ∩ 𝐷)
Assertion
Ref Expression
elin3 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))

Proof of Theorem elin3
StepHypRef Expression
1 elin 3310 . . 3 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21anbi1i 455 . 2 ((𝐴 ∈ (𝐵𝐶) ∧ 𝐴𝐷) ↔ ((𝐴𝐵𝐴𝐶) ∧ 𝐴𝐷))
3 elin3.x . . 3 𝑋 = ((𝐵𝐶) ∩ 𝐷)
43elin2 3315 . 2 (𝐴𝑋 ↔ (𝐴 ∈ (𝐵𝐶) ∧ 𝐴𝐷))
5 df-3an 975 . 2 ((𝐴𝐵𝐴𝐶𝐴𝐷) ↔ ((𝐴𝐵𝐴𝐶) ∧ 𝐴𝐷))
62, 4, 53bitr4i 211 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶𝐴𝐷))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator