![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elin3 | GIF version |
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin3.x | ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) |
Ref | Expression |
---|---|
elin3 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3167 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
2 | 1 | anbi1i 446 | . 2 ⊢ ((𝐴 ∈ (𝐵 ∩ 𝐶) ∧ 𝐴 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ∧ 𝐴 ∈ 𝐷)) |
3 | elin3.x | . . 3 ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) | |
4 | 3 | elin2 3172 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ (𝐵 ∩ 𝐶) ∧ 𝐴 ∈ 𝐷)) |
5 | df-3an 922 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ∧ 𝐴 ∈ 𝐷)) | |
6 | 2, 4, 5 | 3bitr4i 210 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ∩ cin 2983 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2614 df-in 2990 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |