![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elin3 | GIF version |
Description: Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin3.x | ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) |
Ref | Expression |
---|---|
elin3 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3333 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
2 | 1 | anbi1i 458 | . 2 ⊢ ((𝐴 ∈ (𝐵 ∩ 𝐶) ∧ 𝐴 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ∧ 𝐴 ∈ 𝐷)) |
3 | elin3.x | . . 3 ⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) | |
4 | 3 | elin2 3338 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ (𝐵 ∩ 𝐶) ∧ 𝐴 ∈ 𝐷)) |
5 | df-3an 982 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷) ↔ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) ∧ 𝐴 ∈ 𝐷)) | |
6 | 2, 4, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ∩ cin 3143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-in 3150 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |