ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin2d Unicode version

Theorem elin2d 3317
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
Assertion
Ref Expression
elin2d  |-  ( ph  ->  X  e.  B )

Proof of Theorem elin2d
StepHypRef Expression
1 elin1d.1 . 2  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
2 elinel2 3314 . 2  |-  ( X  e.  ( A  i^i  B )  ->  X  e.  B )
31, 2syl 14 1  |-  ( ph  ->  X  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141    i^i cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127
This theorem is referenced by:  elfi2  6949  fiuni  6955  fifo  6957  explecnv  11468  nninfdclemp1  12405  restbasg  12962  txcnp  13065  blin2  13226  bj-charfun  13842  bj-charfundc  13843
  Copyright terms: Public domain W3C validator