ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin2d Unicode version

Theorem elin2d 3311
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
Assertion
Ref Expression
elin2d  |-  ( ph  ->  X  e.  B )

Proof of Theorem elin2d
StepHypRef Expression
1 elin1d.1 . 2  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
2 elinel2 3308 . 2  |-  ( X  e.  ( A  i^i  B )  ->  X  e.  B )
31, 2syl 14 1  |-  ( ph  ->  X  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136    i^i cin 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-in 3121
This theorem is referenced by:  elfi2  6933  fiuni  6939  fifo  6941  explecnv  11442  nninfdclemp1  12379  restbasg  12768  txcnp  12871  blin2  13032  bj-charfun  13649  bj-charfundc  13650
  Copyright terms: Public domain W3C validator