ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin2d Unicode version

Theorem elin2d 3337
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
Assertion
Ref Expression
elin2d  |-  ( ph  ->  X  e.  B )

Proof of Theorem elin2d
StepHypRef Expression
1 elin1d.1 . 2  |-  ( ph  ->  X  e.  ( A  i^i  B ) )
2 elinel2 3334 . 2  |-  ( X  e.  ( A  i^i  B )  ->  X  e.  B )
31, 2syl 14 1  |-  ( ph  ->  X  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2158    i^i cin 3140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-in 3147
This theorem is referenced by:  elfi2  6984  fiuni  6990  fifo  6992  explecnv  11526  nninfdclemp1  12464  sralmod  13634  2idlridld  13686  restbasg  13939  txcnp  14042  blin2  14203  bj-charfun  14830  bj-charfundc  14831
  Copyright terms: Public domain W3C validator