ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwb Unicode version

Theorem elpwb 3615
Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwb  |-  ( A  e.  ~P B  <->  ( A  e.  _V  /\  A  C_  B ) )

Proof of Theorem elpwb
StepHypRef Expression
1 elex 2774 . 2  |-  ( A  e.  ~P B  ->  A  e.  _V )
2 elpwg 3613 . 2  |-  ( A  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2biadan2 456 1  |-  ( A  e.  ~P B  <->  ( A  e.  _V  /\  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by:  elpwpw  4003  elpwpwel  4510
  Copyright terms: Public domain W3C validator