ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwb Unicode version

Theorem elpwb 3576
Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwb  |-  ( A  e.  ~P B  <->  ( A  e.  _V  /\  A  C_  B ) )

Proof of Theorem elpwb
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e.  ~P B  ->  A  e.  _V )
2 elpwg 3574 . 2  |-  ( A  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2biadan2 453 1  |-  ( A  e.  ~P B  <->  ( A  e.  _V  /\  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568
This theorem is referenced by:  elpwpw  3959  elpwpwel  4460
  Copyright terms: Public domain W3C validator