ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwb Unicode version

Theorem elpwb 3600
Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwb  |-  ( A  e.  ~P B  <->  ( A  e.  _V  /\  A  C_  B ) )

Proof of Theorem elpwb
StepHypRef Expression
1 elex 2763 . 2  |-  ( A  e.  ~P B  ->  A  e.  _V )
2 elpwg 3598 . 2  |-  ( A  e.  _V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
31, 2biadan2 456 1  |-  ( A  e.  ~P B  <->  ( A  e.  _V  /\  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2160   _Vcvv 2752    C_ wss 3144   ~Pcpw 3590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157  df-pw 3592
This theorem is referenced by:  elpwpw  3988  elpwpwel  4493
  Copyright terms: Public domain W3C validator