Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwpwel | Unicode version |
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
Ref | Expression |
---|---|
elpwpwel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexb 4451 | . . 3 | |
2 | 1 | anbi1i 454 | . 2 |
3 | elpwpw 3952 | . 2 | |
4 | elpwb 3569 | . 2 | |
5 | 2, 3, 4 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wcel 2136 cvv 2726 wss 3116 cpw 3559 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-uni 3790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |