ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpwel Unicode version

Theorem elpwpwel 4510
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
Assertion
Ref Expression
elpwpwel  |-  ( A  e.  ~P ~P B  <->  U. A  e.  ~P B
)

Proof of Theorem elpwpwel
StepHypRef Expression
1 uniexb 4508 . . 3  |-  ( A  e.  _V  <->  U. A  e. 
_V )
21anbi1i 458 . 2  |-  ( ( A  e.  _V  /\  U. A  C_  B )  <->  ( U. A  e.  _V  /\ 
U. A  C_  B
) )
3 elpwpw 4003 . 2  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)
4 elpwb 3615 . 2  |-  ( U. A  e.  ~P B  <->  ( U. A  e.  _V  /\ 
U. A  C_  B
) )
52, 3, 43bitr4i 212 1  |-  ( A  e.  ~P ~P B  <->  U. A  e.  ~P B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-uni 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator