ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpwel Unicode version

Theorem elpwpwel 4477
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
Assertion
Ref Expression
elpwpwel  |-  ( A  e.  ~P ~P B  <->  U. A  e.  ~P B
)

Proof of Theorem elpwpwel
StepHypRef Expression
1 uniexb 4475 . . 3  |-  ( A  e.  _V  <->  U. A  e. 
_V )
21anbi1i 458 . 2  |-  ( ( A  e.  _V  /\  U. A  C_  B )  <->  ( U. A  e.  _V  /\ 
U. A  C_  B
) )
3 elpwpw 3975 . 2  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)
4 elpwb 3587 . 2  |-  ( U. A  e.  ~P B  <->  ( U. A  e.  _V  /\ 
U. A  C_  B
) )
52, 3, 43bitr4i 212 1  |-  ( A  e.  ~P ~P B  <->  U. A  e.  ~P B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2148   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577   U.cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-uni 3812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator