ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpwel Unicode version

Theorem elpwpwel 4507
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
Assertion
Ref Expression
elpwpwel  |-  ( A  e.  ~P ~P B  <->  U. A  e.  ~P B
)

Proof of Theorem elpwpwel
StepHypRef Expression
1 uniexb 4505 . . 3  |-  ( A  e.  _V  <->  U. A  e. 
_V )
21anbi1i 458 . 2  |-  ( ( A  e.  _V  /\  U. A  C_  B )  <->  ( U. A  e.  _V  /\ 
U. A  C_  B
) )
3 elpwpw 4000 . 2  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)
4 elpwb 3612 . 2  |-  ( U. A  e.  ~P B  <->  ( U. A  e.  _V  /\ 
U. A  C_  B
) )
52, 3, 43bitr4i 212 1  |-  ( A  e.  ~P ~P B  <->  U. A  e.  ~P B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   _Vcvv 2760    C_ wss 3154   ~Pcpw 3602   U.cuni 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604  df-uni 3837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator