ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwg Unicode version

Theorem elpwg 3610
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.)
Assertion
Ref Expression
elpwg  |-  ( A  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )

Proof of Theorem elpwg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eleq1 2256 . 2  |-  ( x  =  A  ->  (
x  e.  ~P B  <->  A  e.  ~P B ) )
2 sseq1 3203 . 2  |-  ( x  =  A  ->  (
x  C_  B  <->  A  C_  B
) )
3 vex 2763 . . 3  |-  x  e. 
_V
43elpw 3608 . 2  |-  ( x  e.  ~P B  <->  x  C_  B
)
51, 2, 4vtoclbg 2822 1  |-  ( A  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164    C_ wss 3154   ~Pcpw 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604
This theorem is referenced by:  elpwi  3611  elpwb  3612  pwidg  3616  prsspwg  3779  elpw2g  4186  snelpwi  4242  prelpwi  4244  pwel  4248  eldifpw  4509  f1opw2  6126  2pwuninelg  6338  tfrlemibfn  6383  tfr1onlembfn  6399  tfrcllembfn  6412  elpmg  6720  pw2f1odclem  6892  fopwdom  6894  fiinopn  14183  ssntr  14301
  Copyright terms: Public domain W3C validator