Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwg | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
Ref | Expression |
---|---|
elpwg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . 2 | |
2 | sseq1 3165 | . 2 | |
3 | vex 2729 | . . 3 | |
4 | 3 | elpw 3565 | . 2 |
5 | 1, 2, 4 | vtoclbg 2787 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2136 wss 3116 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: elpwi 3568 elpwb 3569 pwidg 3573 prsspwg 3732 elpw2g 4135 snelpwi 4190 prelpwi 4192 pwel 4196 eldifpw 4455 f1opw2 6044 2pwuninelg 6251 tfrlemibfn 6296 tfr1onlembfn 6312 tfrcllembfn 6325 elpmg 6630 fopwdom 6802 fiinopn 12642 ssntr 12762 |
Copyright terms: Public domain | W3C validator |