| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwg | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpwg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 |
. 2
| |
| 2 | sseq1 3206 |
. 2
| |
| 3 | vex 2766 |
. . 3
| |
| 4 | 3 | elpw 3611 |
. 2
|
| 5 | 1, 2, 4 | vtoclbg 2825 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 |
| This theorem is referenced by: elpwi 3614 elpwb 3615 pwidg 3619 prsspwg 3782 elpw2g 4189 snelpwi 4245 prelpwi 4247 pwel 4251 eldifpw 4512 f1opw2 6129 2pwuninelg 6341 tfrlemibfn 6386 tfr1onlembfn 6402 tfrcllembfn 6415 elpmg 6723 pw2f1odclem 6895 fopwdom 6897 fiinopn 14240 ssntr 14358 |
| Copyright terms: Public domain | W3C validator |