| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwg | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpwg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 |
. 2
| |
| 2 | sseq1 3220 |
. 2
| |
| 3 | vex 2776 |
. . 3
| |
| 4 | 3 | elpw 3627 |
. 2
|
| 5 | 1, 2, 4 | vtoclbg 2836 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 |
| This theorem is referenced by: elpwi 3630 elpwb 3631 pwidg 3635 prsspwg 3799 elpw2g 4208 snelpwi 4264 prelpwi 4266 pwel 4270 eldifpw 4532 f1opw2 6165 2pwuninelg 6382 tfrlemibfn 6427 tfr1onlembfn 6443 tfrcllembfn 6456 elpmg 6764 pw2f1odclem 6946 fopwdom 6948 fiinopn 14551 ssntr 14669 incistruhgr 15761 upgr1edc 15789 |
| Copyright terms: Public domain | W3C validator |