Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwg | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
Ref | Expression |
---|---|
elpwg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2233 | . 2 | |
2 | sseq1 3170 | . 2 | |
3 | vex 2733 | . . 3 | |
4 | 3 | elpw 3572 | . 2 |
5 | 1, 2, 4 | vtoclbg 2791 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2141 wss 3121 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: elpwi 3575 elpwb 3576 pwidg 3580 prsspwg 3739 elpw2g 4142 snelpwi 4197 prelpwi 4199 pwel 4203 eldifpw 4462 f1opw2 6055 2pwuninelg 6262 tfrlemibfn 6307 tfr1onlembfn 6323 tfrcllembfn 6336 elpmg 6642 fopwdom 6814 fiinopn 12796 ssntr 12916 |
Copyright terms: Public domain | W3C validator |