| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwg | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpwg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2267 |
. 2
| |
| 2 | sseq1 3215 |
. 2
| |
| 3 | vex 2774 |
. . 3
| |
| 4 | 3 | elpw 3621 |
. 2
|
| 5 | 1, 2, 4 | vtoclbg 2833 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 |
| This theorem is referenced by: elpwi 3624 elpwb 3625 pwidg 3629 prsspwg 3792 elpw2g 4199 snelpwi 4255 prelpwi 4257 pwel 4261 eldifpw 4522 f1opw2 6142 2pwuninelg 6359 tfrlemibfn 6404 tfr1onlembfn 6420 tfrcllembfn 6433 elpmg 6741 pw2f1odclem 6913 fopwdom 6915 fiinopn 14394 ssntr 14512 |
| Copyright terms: Public domain | W3C validator |