| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwg | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 6-Aug-2000.) |
| Ref | Expression |
|---|---|
| elpwg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 |
. 2
| |
| 2 | sseq1 3247 |
. 2
| |
| 3 | vex 2802 |
. . 3
| |
| 4 | 3 | elpw 3655 |
. 2
|
| 5 | 1, 2, 4 | vtoclbg 2862 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: elpwi 3658 elpwb 3659 pwidg 3663 prsspwg 3827 elpw2g 4239 snelpwg 4295 snelpwi 4296 prelpw 4298 prelpwi 4299 pwel 4303 eldifpw 4567 f1opw2 6210 2pwuninelg 6427 tfrlemibfn 6472 tfr1onlembfn 6488 tfrcllembfn 6501 elpmg 6809 pw2f1odclem 6991 fopwdom 6993 fiinopn 14672 ssntr 14790 incistruhgr 15884 upgr1edc 15915 |
| Copyright terms: Public domain | W3C validator |