Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab2g | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | |
elab2g.2 |
Ref | Expression |
---|---|
elab2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 | |
2 | 1 | eleq2i 2237 | . 2 |
3 | elab2g.1 | . . 3 | |
4 | 3 | elabg 2876 | . 2 |
5 | 2, 4 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: elab2 2878 elab4g 2879 eldif 3130 elun 3268 elin 3310 elsng 3598 elprg 3603 eluni 3799 eliun 3877 eliin 3878 elopab 4243 elong 4358 opeliunxp 4666 elrn2g 4801 eldmg 4806 elrnmpt 4860 elrnmpt1 4862 elimag 4957 elrnmpog 5965 eloprabi 6175 tfrlem3ag 6288 tfr1onlem3ag 6316 tfrcllemsucaccv 6333 elqsg 6563 elixp2 6680 isomni 7112 ismkv 7129 iswomni 7141 1idprl 7552 1idpru 7553 recexprlemell 7584 recexprlemelu 7585 mertenslemub 11497 mertenslemi1 11498 mertenslem2 11499 ismgm 12611 istopg 12791 isbasisg 12836 2sqlem8 13753 2sqlem9 13754 |
Copyright terms: Public domain | W3C validator |