| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2g | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 |
|
| elab2g.2 |
|
| Ref | Expression |
|---|---|
| elab2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 |
. . 3
| |
| 2 | 1 | eleq2i 2273 |
. 2
|
| 3 | elab2g.1 |
. . 3
| |
| 4 | 3 | elabg 2923 |
. 2
|
| 5 | 2, 4 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 |
| This theorem is referenced by: elab2 2925 elab4g 2926 eldif 3179 elun 3318 elin 3360 elif 3587 elsng 3653 elprg 3658 eluni 3859 eliun 3937 eliin 3938 elopab 4312 elong 4428 opeliunxp 4738 elrn2g 4876 eldmg 4882 elrnmpt 4936 elrnmpt1 4938 elimag 5035 elrnmpog 6071 eloprabi 6295 tfrlem3ag 6408 tfr1onlem3ag 6436 tfrcllemsucaccv 6453 elqsg 6685 elixp2 6802 isomni 7253 ismkv 7270 iswomni 7282 isacnm 7331 1idprl 7723 1idpru 7724 recexprlemell 7755 recexprlemelu 7756 mertenslemub 11920 mertenslemi1 11921 mertenslem2 11922 4sqexercise1 12796 4sqexercise2 12797 4sqlemsdc 12798 ismgm 13264 istopg 14546 isbasisg 14591 2sqlem8 15675 2sqlem9 15676 isuhgrm 15742 isushgrm 15743 isupgren 15766 isumgren 15776 |
| Copyright terms: Public domain | W3C validator |