![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elab2g | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
elab2g.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elab2g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2i 2260 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | elab2g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | elabg 2907 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrid 192 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: elab2 2909 elab4g 2910 eldif 3163 elun 3301 elin 3343 elsng 3634 elprg 3639 eluni 3839 eliun 3917 eliin 3918 elopab 4289 elong 4405 opeliunxp 4715 elrn2g 4853 eldmg 4858 elrnmpt 4912 elrnmpt1 4914 elimag 5010 elrnmpog 6032 eloprabi 6251 tfrlem3ag 6364 tfr1onlem3ag 6392 tfrcllemsucaccv 6409 elqsg 6641 elixp2 6758 isomni 7197 ismkv 7214 iswomni 7226 1idprl 7652 1idpru 7653 recexprlemell 7684 recexprlemelu 7685 mertenslemub 11680 mertenslemi1 11681 mertenslem2 11682 4sqexercise1 12539 4sqexercise2 12540 4sqlemsdc 12541 ismgm 12943 istopg 14178 isbasisg 14223 2sqlem8 15280 2sqlem9 15281 |
Copyright terms: Public domain | W3C validator |