| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2g | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 |
|
| elab2g.2 |
|
| Ref | Expression |
|---|---|
| elab2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 |
. . 3
| |
| 2 | 1 | eleq2i 2263 |
. 2
|
| 3 | elab2g.1 |
. . 3
| |
| 4 | 3 | elabg 2910 |
. 2
|
| 5 | 2, 4 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: elab2 2912 elab4g 2913 eldif 3166 elun 3304 elin 3346 elsng 3637 elprg 3642 eluni 3842 eliun 3920 eliin 3921 elopab 4292 elong 4408 opeliunxp 4718 elrn2g 4856 eldmg 4861 elrnmpt 4915 elrnmpt1 4917 elimag 5013 elrnmpog 6035 eloprabi 6254 tfrlem3ag 6367 tfr1onlem3ag 6395 tfrcllemsucaccv 6412 elqsg 6644 elixp2 6761 isomni 7202 ismkv 7219 iswomni 7231 1idprl 7657 1idpru 7658 recexprlemell 7689 recexprlemelu 7690 mertenslemub 11699 mertenslemi1 11700 mertenslem2 11701 4sqexercise1 12567 4sqexercise2 12568 4sqlemsdc 12569 ismgm 13000 istopg 14235 isbasisg 14280 2sqlem8 15364 2sqlem9 15365 |
| Copyright terms: Public domain | W3C validator |