| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2g | Unicode version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2g.1 |
|
| elab2g.2 |
|
| Ref | Expression |
|---|---|
| elab2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2g.2 |
. . 3
| |
| 2 | 1 | eleq2i 2296 |
. 2
|
| 3 | elab2g.1 |
. . 3
| |
| 4 | 3 | elabg 2949 |
. 2
|
| 5 | 2, 4 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: elab2 2951 elab4g 2952 eldif 3206 elun 3345 elin 3387 elif 3614 elsng 3681 elprg 3686 eluni 3890 eliun 3968 eliin 3969 elopab 4345 elong 4463 opeliunxp 4773 elrn2g 4911 eldmg 4917 elrnmpt 4972 elrnmpt1 4974 elimag 5071 elrnmpog 6116 eloprabi 6340 tfrlem3ag 6453 tfr1onlem3ag 6481 tfrcllemsucaccv 6498 elqsg 6730 elixp2 6847 isomni 7299 ismkv 7316 iswomni 7328 isacnm 7381 1idprl 7773 1idpru 7774 recexprlemell 7805 recexprlemelu 7806 mertenslemub 12040 mertenslemi1 12041 mertenslem2 12042 4sqexercise1 12916 4sqexercise2 12917 4sqlemsdc 12918 ismgm 13385 istopg 14667 isbasisg 14712 2sqlem8 15796 2sqlem9 15797 isuhgrm 15865 isushgrm 15866 isupgren 15889 isumgren 15899 isuspgren 15949 isusgren 15950 |
| Copyright terms: Public domain | W3C validator |