ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqs Unicode version

Theorem elqs 6733
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Hypothesis
Ref Expression
elqs.1  |-  B  e. 
_V
Assertion
Ref Expression
elqs  |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
)
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem elqs
StepHypRef Expression
1 elqs.1 . 2  |-  B  e. 
_V
2 elqsg 6732 . 2  |-  ( B  e.  _V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
31, 2ax-mp 5 1  |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799   [cec 6678   /.cqs 6679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-qs 6686
This theorem is referenced by:  qsss  6741  qsid  6747  erovlem  6774  nqnq0  7628
  Copyright terms: Public domain W3C validator