ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqs Unicode version

Theorem elqs 6586
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Hypothesis
Ref Expression
elqs.1  |-  B  e. 
_V
Assertion
Ref Expression
elqs  |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
)
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem elqs
StepHypRef Expression
1 elqs.1 . 2  |-  B  e. 
_V
2 elqsg 6585 . 2  |-  ( B  e.  _V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
31, 2ax-mp 5 1  |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   _Vcvv 2738   [cec 6533   /.cqs 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-qs 6541
This theorem is referenced by:  qsss  6594  qsid  6600  erovlem  6627  nqnq0  7440
  Copyright terms: Public domain W3C validator