ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqs Unicode version

Theorem elqs 6696
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Hypothesis
Ref Expression
elqs.1  |-  B  e. 
_V
Assertion
Ref Expression
elqs  |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
)
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem elqs
StepHypRef Expression
1 elqs.1 . 2  |-  B  e. 
_V
2 elqsg 6695 . 2  |-  ( B  e.  _V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
31, 2ax-mp 5 1  |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   E.wrex 2487   _Vcvv 2776   [cec 6641   /.cqs 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-qs 6649
This theorem is referenced by:  qsss  6704  qsid  6710  erovlem  6737  nqnq0  7589
  Copyright terms: Public domain W3C validator