ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsg Unicode version

Theorem ecelqsg 6546
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecelqsg  |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )

Proof of Theorem ecelqsg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2164 . . 3  |-  [ B ] R  =  [ B ] R
2 eceq1 6528 . . . . 5  |-  ( x  =  B  ->  [ x ] R  =  [ B ] R )
32eqeq2d 2176 . . . 4  |-  ( x  =  B  ->  ( [ B ] R  =  [ x ] R  <->  [ B ] R  =  [ B ] R
) )
43rspcev 2826 . . 3  |-  ( ( B  e.  A  /\  [ B ] R  =  [ B ] R
)  ->  E. x  e.  A  [ B ] R  =  [
x ] R )
51, 4mpan2 422 . 2  |-  ( B  e.  A  ->  E. x  e.  A  [ B ] R  =  [
x ] R )
6 ecexg 6497 . . . 4  |-  ( R  e.  V  ->  [ B ] R  e.  _V )
7 elqsg 6543 . . . 4  |-  ( [ B ] R  e. 
_V  ->  ( [ B ] R  e.  ( A /. R )  <->  E. x  e.  A  [ B ] R  =  [
x ] R ) )
86, 7syl 14 . . 3  |-  ( R  e.  V  ->  ( [ B ] R  e.  ( A /. R
)  <->  E. x  e.  A  [ B ] R  =  [ x ] R
) )
98biimpar 295 . 2  |-  ( ( R  e.  V  /\  E. x  e.  A  [ B ] R  =  [
x ] R )  ->  [ B ] R  e.  ( A /. R ) )
105, 9sylan2 284 1  |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   E.wrex 2443   _Vcvv 2722   [cec 6491   /.cqs 6492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-xp 4605  df-cnv 4607  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-ec 6495  df-qs 6499
This theorem is referenced by:  ecelqsi  6547  qliftlem  6571  eroprf  6586
  Copyright terms: Public domain W3C validator