ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsg Unicode version

Theorem ecelqsg 6566
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecelqsg  |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )

Proof of Theorem ecelqsg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . 3  |-  [ B ] R  =  [ B ] R
2 eceq1 6548 . . . . 5  |-  ( x  =  B  ->  [ x ] R  =  [ B ] R )
32eqeq2d 2182 . . . 4  |-  ( x  =  B  ->  ( [ B ] R  =  [ x ] R  <->  [ B ] R  =  [ B ] R
) )
43rspcev 2834 . . 3  |-  ( ( B  e.  A  /\  [ B ] R  =  [ B ] R
)  ->  E. x  e.  A  [ B ] R  =  [
x ] R )
51, 4mpan2 423 . 2  |-  ( B  e.  A  ->  E. x  e.  A  [ B ] R  =  [
x ] R )
6 ecexg 6517 . . . 4  |-  ( R  e.  V  ->  [ B ] R  e.  _V )
7 elqsg 6563 . . . 4  |-  ( [ B ] R  e. 
_V  ->  ( [ B ] R  e.  ( A /. R )  <->  E. x  e.  A  [ B ] R  =  [
x ] R ) )
86, 7syl 14 . . 3  |-  ( R  e.  V  ->  ( [ B ] R  e.  ( A /. R
)  <->  E. x  e.  A  [ B ] R  =  [ x ] R
) )
98biimpar 295 . 2  |-  ( ( R  e.  V  /\  E. x  e.  A  [ B ] R  =  [
x ] R )  ->  [ B ] R  e.  ( A /. R ) )
105, 9sylan2 284 1  |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   _Vcvv 2730   [cec 6511   /.cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-ec 6515  df-qs 6519
This theorem is referenced by:  ecelqsi  6567  qliftlem  6591  eroprf  6606
  Copyright terms: Public domain W3C validator