ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsg Unicode version

Theorem ecelqsg 6647
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecelqsg  |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )

Proof of Theorem ecelqsg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3  |-  [ B ] R  =  [ B ] R
2 eceq1 6627 . . . . 5  |-  ( x  =  B  ->  [ x ] R  =  [ B ] R )
32eqeq2d 2208 . . . 4  |-  ( x  =  B  ->  ( [ B ] R  =  [ x ] R  <->  [ B ] R  =  [ B ] R
) )
43rspcev 2868 . . 3  |-  ( ( B  e.  A  /\  [ B ] R  =  [ B ] R
)  ->  E. x  e.  A  [ B ] R  =  [
x ] R )
51, 4mpan2 425 . 2  |-  ( B  e.  A  ->  E. x  e.  A  [ B ] R  =  [
x ] R )
6 ecexg 6596 . . . 4  |-  ( R  e.  V  ->  [ B ] R  e.  _V )
7 elqsg 6644 . . . 4  |-  ( [ B ] R  e. 
_V  ->  ( [ B ] R  e.  ( A /. R )  <->  E. x  e.  A  [ B ] R  =  [
x ] R ) )
86, 7syl 14 . . 3  |-  ( R  e.  V  ->  ( [ B ] R  e.  ( A /. R
)  <->  E. x  e.  A  [ B ] R  =  [ x ] R
) )
98biimpar 297 . 2  |-  ( ( R  e.  V  /\  E. x  e.  A  [ B ] R  =  [
x ] R )  ->  [ B ] R  e.  ( A /. R ) )
105, 9sylan2 286 1  |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   _Vcvv 2763   [cec 6590   /.cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594  df-qs 6598
This theorem is referenced by:  ecelqsi  6648  qliftlem  6672  eroprf  6687  quseccl0g  13361
  Copyright terms: Public domain W3C validator