ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecelqsg Unicode version

Theorem ecelqsg 6698
Description: Membership of an equivalence class in a quotient set. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecelqsg  |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )

Proof of Theorem ecelqsg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . 3  |-  [ B ] R  =  [ B ] R
2 eceq1 6678 . . . . 5  |-  ( x  =  B  ->  [ x ] R  =  [ B ] R )
32eqeq2d 2219 . . . 4  |-  ( x  =  B  ->  ( [ B ] R  =  [ x ] R  <->  [ B ] R  =  [ B ] R
) )
43rspcev 2884 . . 3  |-  ( ( B  e.  A  /\  [ B ] R  =  [ B ] R
)  ->  E. x  e.  A  [ B ] R  =  [
x ] R )
51, 4mpan2 425 . 2  |-  ( B  e.  A  ->  E. x  e.  A  [ B ] R  =  [
x ] R )
6 ecexg 6647 . . . 4  |-  ( R  e.  V  ->  [ B ] R  e.  _V )
7 elqsg 6695 . . . 4  |-  ( [ B ] R  e. 
_V  ->  ( [ B ] R  e.  ( A /. R )  <->  E. x  e.  A  [ B ] R  =  [
x ] R ) )
86, 7syl 14 . . 3  |-  ( R  e.  V  ->  ( [ B ] R  e.  ( A /. R
)  <->  E. x  e.  A  [ B ] R  =  [ x ] R
) )
98biimpar 297 . 2  |-  ( ( R  e.  V  /\  E. x  e.  A  [ B ] R  =  [
x ] R )  ->  [ B ] R  e.  ( A /. R ) )
105, 9sylan2 286 1  |-  ( ( R  e.  V  /\  B  e.  A )  ->  [ B ] R  e.  ( A /. R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   E.wrex 2487   _Vcvv 2776   [cec 6641   /.cqs 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-ec 6645  df-qs 6649
This theorem is referenced by:  ecelqsi  6699  qliftlem  6723  eroprf  6738  quseccl0g  13682
  Copyright terms: Public domain W3C validator