ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsi Unicode version

Theorem elqsi 6553
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
elqsi  |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R
)
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem elqsi
StepHypRef Expression
1 elqsg 6551 . 2  |-  ( B  e.  ( A /. R )  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
21ibi 175 1  |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   E.wrex 2445   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-qs 6507
This theorem is referenced by:  ectocld  6567  ecoptocl  6588  eroveu  6592  dmaddpqlem  7318  nqpi  7319  nq0nn  7383
  Copyright terms: Public domain W3C validator