ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsi Unicode version

Theorem elqsi 6646
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
elqsi  |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R
)
Distinct variable groups:    x, A    x, B    x, R

Proof of Theorem elqsi
StepHypRef Expression
1 elqsg 6644 . 2  |-  ( B  e.  ( A /. R )  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
21ibi 176 1  |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   E.wrex 2476   [cec 6590   /.cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-qs 6598
This theorem is referenced by:  ectocld  6660  ecoptocl  6681  eroveu  6685  dmaddpqlem  7444  nqpi  7445  nq0nn  7509
  Copyright terms: Public domain W3C validator