Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsi Unicode version

Theorem elqsi 6360
 Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
elqsi
Distinct variable groups:   ,   ,   ,

Proof of Theorem elqsi
StepHypRef Expression
1 elqsg 6358 . 2
21ibi 175 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1290   wcel 1439  wrex 2361  cec 6306  cqs 6307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2624  df-qs 6314 This theorem is referenced by:  ectocld  6374  ecoptocl  6395  eroveu  6399  dmaddpqlem  6999  nqpi  7000  nq0nn  7064
 Copyright terms: Public domain W3C validator